An B, Hinman MB, Holland GP, Yarger JL, Lewis RV (2011) Inducing beta-sheets formation in synthetic spider silk fibers by aqueous post-spin stretching. Biomacromolecules 12(6):2375–2381. doi:10.1021/bm200463e
PubMed
CAS
Google Scholar
Arcidiacono S, Mello C, Kaplan D, Cheley S, Bayley H (1998) Purification and characterization of recombinant spider silk expressed in Escherichia coli. Appl Microbiol Biotechnol 49(1):31–38. doi:10.1007/s002530051133
PubMed
CAS
Google Scholar
Arcidiacono S, Mello CM, Butler M, Welsh E, Soares JW, Allen A, Ziegler D, Laue T, Chase S (2002) Aqueous processing and fiber spinning of recombinant spider silks. Macromolecules 35(4):1262–1266. doi:10.1021/ma011471o
CAS
Google Scholar
Askarieh G, Hedhammar M, Nordling K, Saenz A, Casals C, Rising A, Johansson J, Knight SD (2010) Self-assembly of spider silk proteins is controlled by a pH-sensitive relay. Nature 465(7295):236–238. doi:10.1038/nature08962
PubMed
CAS
Google Scholar
Ayoub NA, Garb JE, Tinghitella RM, Collin MA, Hayashi CY (2007) Blueprint for a high-performance biomaterial: full-length spider dragline silk genes. PLoS One 2(6):e514. doi:10.1371/journal.pone.0000514
PubMed
Google Scholar
Bauer F, Wohlrab S, Scheibel T (2013) Controllable cell adhesion, growth and orientation on layered silk protein films. Biomater Sci. doi:10.1039/C3BM60114E
Google Scholar
Baumgarten PK (1971) Electrostatic spinning of acrylic microfibers. J Colloid Interface Sci 36(1):71–79. doi:10.1016/0021-9797(71)90241-4
CAS
Google Scholar
Belton DJ, Mieszawska AJ, Currie HA, Kaplan DL, Perry CC (2012) Silk-silica composites from genetically engineered chimeric proteins: materials properties correlate with silica condensation rate and colloidal stability of the proteins in aqueous solution. Langmuir 28(9):4373–4381. doi:10.1021/La205084z
PubMed
CAS
Google Scholar
Bini E, Foo CW, Huang J, Karageorgiou V, Kitchel B, Kaplan DL (2006) RGD-functionalized bioengineered spider dragline silk biomaterial. Biomacromolecules 7(11):3139–3145. doi:10.1021/bm0607877
PubMed
CAS
Google Scholar
Bogush VG, Sokolova OS, Davydova LI, Klinov DV, Sidoruk KV, Esipova NG, Neretina TV, Orchanskyi IA, Makeev VY, Tumanyan VG, Shaitan KV, Debabov VG, Kirpichnikov MP (2009) A novel model system for design of biomaterials based on recombinant analogs of spider silk proteins. J Neuroimmune Pharmacol 4(1):17–27. doi:10.1007/s11481-008-9129-z
PubMed
Google Scholar
Breslauer DN, Lee LP, Muller SJ (2009) Simulation of flow in the silk gland. Biomacromolecules 10(1):49–57. doi:10.1021/Bm800752x
PubMed
CAS
Google Scholar
Brooks AE, Nelson SR, Jones JA, Koenig C, Hinman M, Stricker S, Lewis RV (2008a) Distinct contributions of model MaSp1 and MaSp2 like peptides to the mechanical properties of synthetic major ampullate silk fibers as revealed in silico. Nanotechnol Sci Appl 1:9–16. doi:10.2147/NSA.S3961
PubMed
CAS
Google Scholar
Brooks AE, Stricker SM, Joshi SB, Kamerzell TJ, Middaugh CR, Lewis RV (2008b) Properties of synthetic spider silk fibers based on Argiope aurantia MaSp2. Biomacromolecules 9(6):1506–1510. doi:10.1021/bm701124p
PubMed
CAS
Google Scholar
Buchko CJ, Chen LC, Shen Y, Martin DC (1999) Processing and microstructural characterization of porous biocompatible protein polymer thin films. Polymer 40(26):7397–7407. doi:10.1016/S0032-3861(98)00866-0
CAS
Google Scholar
Carrico IS (2008) Chemoselective modification of proteins: hitting the target. Chem Soc Rev 37(7):1423–1431. doi:10.1039/B703364h
PubMed
CAS
Google Scholar
Chengjie F, Zhengzhong S, Vollrath F (2009) Animal silks: their structures, properties and artificial production. Chem Commun 43:6515–6529. doi:10.1039/B911049F
Google Scholar
Colgin MA, Lewis RV (1998) Spider minor ampullate silk proteins contain new repetitive sequences and highly conserved non-silk-like “spacer regions”. Protein Sci 7(3):667–672. doi:10.1002/pro.5560070315
PubMed
CAS
Google Scholar
Currie HA, Deschaume O, Naik RR, Perry CC, Kaplan DL (2011) Genetically engineered chimeric silk-silver binding proteins. Adv Funct Mater 21(15):2889–2895. doi:10.1002/adfm.201100249
PubMed
CAS
Google Scholar
Eisoldt L, Hardy JG, Heim M, Scheibel TR (2010) The role of salt and shear on the storage and assembly of spider silk proteins. J Struct Biol 170(2):413–419. doi:10.1016/j.jsb.2009.12.027
PubMed
CAS
Google Scholar
Eisoldt L, Scheibel T, Smith A (2011) Decoding the secrets of spider silk. Mater Today 14(3):80–86. doi:10.1016/S1369-7021(11)70057-8
CAS
Google Scholar
Elices M, Guinea GV, Plaza GR, Karatzas C, Riekel C, Agulló-Rueda F, Daza R, Pérez-Rigueiro J (2011) Bioinspired fibers follow the track of natural spider silk. Macromolecules 44(5):1166–1176. doi:10.1021/ma102291m
CAS
Google Scholar
Escuder B, Miravet JF (2006) Silk-inspired low-molecular-weight organogelator. Langmuir 22(18):7793–7797. doi:10.1021/La060499w
PubMed
CAS
Google Scholar
Exler JH, Hummerich D, Scheibel T (2007) The amphiphilic properties of spider silks are important for spinning. Angew Chem Int Ed 46(19):3559–3562. doi:10.1002/anie.200604718
CAS
Google Scholar
Fahnestock S (1994) Novel, recombinantly produced spider silk analogs. USA Patent WO 94/29450, 22 Dec 1994
Google Scholar
Fahnestock SR, Irwin SL (1997) Synthetic spider dragline silk proteins and their production in Escherichia coli. Appl Microbiol Biotechnol 47(1):23–32. doi:10.1007/s002530050883
PubMed
CAS
Google Scholar
Foo CWP, Patwardhan SV, Belton DJ, Kitchel B, Anastasiades D, Huang J, Naik RR, Perry CC, Kaplan DL (2006) Novel nanocomposites from spider silk-silica fusion (chimeric) proteins. Proc Natl Acad Sci USA 103(25):9428–9433. doi:10.1073/pnas.0601096103
CAS
Google Scholar
Frenot A, Chronakis IS (2003) Polymer nanofibers assembled by electrospinning. Curr Opin Colloid Interface Sci 8(1):64–75. doi:10.1016/S1359-0294(03)00004-9
CAS
Google Scholar
Fukushima Y (1998) Genetically engineered syntheses of tandem repetitive polypeptides consisting of glycine-rich sequence of spider dragline silk. Biopolymers 45(4):269–279. doi:10.1002/(SICI)1097-0282(19980405)4
PubMed
CAS
Google Scholar
Garb JE, Ayoub NA, Hayashi CY (2010) Untangling spider silk evolution with spidroin terminal domains. BMC Evol Biol 10:243. doi:10.1186/1471-2148-10-243
PubMed
Google Scholar
Geurts P, Zhao L, Hsia Y, Gnesa E, Tang S, Jeffery F, Mattina CL, Franz A, Vierra C (2010) Synthetic spider silk fibers spun from pyriform spidroin 2, a glue silk protein discovered in orb-weaving spider attachment discs. Biomacromolecules 11(12):3495–3503. doi:10.1021/bm101002w
PubMed
CAS
Google Scholar
Gnesa E, Hsia Y, Yarger JL, Weber W, Lin-Cereghino J, Lin-Cereghino G, Tang S, Agari K, Vierra C (2012) Conserved C-terminal domain of spider tubuliform spidroin 1 contributes to extensibility in synthetic fibers. Biomacromolecules 13(2):304–312. doi:10.1021/bm201262n
PubMed
CAS
Google Scholar
Gomes SC, Leonor IB, Mano JF, Reis RL, Kaplan DL (2011) Antimicrobial functionalized genetically engineered spider silk. Biomaterials 32(18):4255–4266. doi:10.1016/j.biomaterials.2011.02.040
PubMed
CAS
Google Scholar
Gosline JM, Guerette PA, Ortlepp CS, Savage KN (1999) The mechanical design of spider silks: from fibroin sequence to mechanical function. J Exp Biol 202(23):3295–3303
PubMed
CAS
Google Scholar
Greiner A, Wendorff JH (2007) Electrospinning: a fascinating method for the preparation of ultrathin fibres. Angew Chem Int Ed 46(30):5670–5703. doi:10.1002/anie.200604646
CAS
Google Scholar
Grip S, Rising A, Nimmervoll H, Storckenfeldt E, McQueen-Mason SJ, Pouchkina-Stantcheva N, Vollrath F, Engström W, Fernandez-Arias A (2006) Transient expression of a major ampullate spidroin 1 gene fragment from Euprosthenops sp. in mammalian cells. Cancer Genomics Proteomics 3(2):83–87
CAS
Google Scholar
Guerette PA, Ginzinger DG, Weber BHF, Gosline JM (1996) Silk properties determined by gland-specific expression of a spider fibroin gene family. Science 272(5258):112–115. doi:10.1126/science.272.5258.112
PubMed
CAS
Google Scholar
Hagn F, Eisoldt L, Hardy JG, Vendrely C, Coles M, Scheibel T, Kessler H (2010) A highly conserved spider silk domain acts as a molecular switch that controls fibre assembly. Nature 465(7295):239–242. doi:10.1038/nature08936
PubMed
CAS
Google Scholar
Hagn F, Thamm C, Scheibel T, Kessler H (2011) pH-dependent dimerization and salt-dependent stabilization of the N-terminal domain of spider dragline silk–implications for fiber formation. Angew Chem Int Ed 50(1):310–313. doi:10.1002/anie.201003795
CAS
Google Scholar
Hardy JG, Romer LM, Scheibel TR (2008) Polymeric materials based on silk proteins. Polymer 49(20):4309–4327. doi:10.1016/j.polymer.2008.08.006
CAS
Google Scholar
Hayashi CY, Blackledge TA, Lewis RV (2004) Molecular and mechanical characterization of aciniform silk: uniformity of iterated sequence modules in a novel member of the spider silk fibroin gene family. Mol Biol Evol 21(10):1950–1959. doi:10.1093/molbev/msh204
PubMed
CAS
Google Scholar
Hedhammar M, Rising A, Grip S, Martinez AS, Nordling K, Casals C, Stark M, Johansson J (2008) Structural properties of recombinant nonrepetitive and repetitive parts of major ampullate spidroin 1 from Euprosthenops australis: implications for fiber formation. Biochemistry 47(11):3407–3417. doi:10.1021/bi702432y
PubMed
CAS
Google Scholar
Heikkila P, Harlin A (2008) Parameter study of electrospinning of polyamide-6. Eur Polym J 44(10):3067–3079. doi:10.1016/j.eurpolymj.2008.06.032
CAS
Google Scholar
Heim M, Keerl D, Scheibel T (2009) Spider silk: from soluble protein to extraordinary fiber. Angew Chem Int Ed 48(20):3584–3596. doi:10.1002/anie.200803341
CAS
Google Scholar
Heim M, Ackerschott CB, Scheibel T (2010) Characterization of recombinantly produced spider flagelliform silk domains. J Struct Biol 170(2):420–425. doi:10.1016/j.jsb.2009.12.025
PubMed
CAS
Google Scholar
Heitz JR, Anderson CD, Anderson BM (1968) Inactivation of yeast alcohol dehydrogenase by N-alkylmaleimides. Arch Biochem Biophys 127(1–3):627–636. doi:10.1016/0003-9861(68)90271-3
PubMed
CAS
Google Scholar
Hu XY, Yuan J, Wang XD, Vasanthavada K, Falick AM, Jones PR, La Mattina C, Vierra CA (2007) Analysis of aqueous glue coating proteins on the silk fibers of the cob weaver, Latrodectus hesperus. Biochemistry 46(11):3294–3303. doi:10.1021/bi602507e
PubMed
CAS
Google Scholar
Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Sci Technol 63(15):2223–2253. doi:10.1016/S0266-3538(03)00178-7
CAS
Google Scholar
Huang J, Wong C, George A, Kaplan DL (2007) The effect of genetically engineered spider silk-dentin matrix protein 1 chimeric protein on hydroxyapatite nucleation. Biomaterials 28(14):2358–2367. doi:10.1016/j.biomaterials.2006.11.021
PubMed
CAS
Google Scholar
Huemmerich D, Helsen CW, Quedzuweit S, Oschmann J, Rudolph R, Scheibel T (2004a) Primary structure elements of spider dragline silks and their contribution to protein solubility. Biochemistry 43(42):13604–13612. doi:10.1021/Bi048983q
PubMed
CAS
Google Scholar
Huemmerich D, Scheibel T, Vollrath F, Cohen S, Gat U, Ittah S (2004b) Novel assembly properties of recombinant spider dragline silk proteins. Curr Biol 14(22):2070–2074. doi:10.1016/j.cub.2004.11.005
PubMed
CAS
Google Scholar
Huemmerich D, Slotta U, Scheibel T (2006) Processing and modification of films made from recombinant spider silk proteins. Appl Phys A: Mater Sci Process 82(2):219–222. doi:10.1007/s00339-005-3428-5
CAS
Google Scholar
Humenik M, Smith AM, Scheibel T (2011) Recombinant spider silks—biopolymers with potential for future applications. Polymers 3(1):640–661. doi:10.3390/polym3010640
CAS
Google Scholar
Iqbal S, Miravet JF, Escuder B (2008) Biomimetic self-assembly of tetrapeptides into fibrillar networks and organogels. Eur J Org Chem 27:4580–4590. doi:10.1002/ejoc.200800547
Google Scholar
Ittah S, Cohen S, Garty S, Cohn D, Gat U (2006) An essential role for the C-terminal domain of a dragline spider silk protein in directing fiber formation. Biomacromolecules 7(6):1790–1795. doi:10.1021/bm060120k
PubMed
CAS
Google Scholar
Jin HJ, Fridrikh SV, Rutledge GC, Kaplan DL (2002) Electrospinning Bombyx mori silk with poly(ethylene oxide). Biomacromolecules 3(6):1233–1239. doi:10.1021/Bm025581u
PubMed
CAS
Google Scholar
Karatzas CN, Turner JD, Karatzas A-L (1999) Production of biofilaments in transgenic animals. Canada Patent WO 99/47661
Google Scholar
Keerl D, Scheibel T (2012) Characterization of natural and biomimetic spider silk fibers. Bioinspired Biomim Nanobiomaterials 1(2):83–94. doi:10.1680/bbn.11.00016
CAS
Google Scholar
Kinahan ME, Filippidi E, Koster S, Hu X, Evans HM, Pfohl T, Kaplan DL, Wong J (2011) Tunable silk: using microfluidics to fabricate silk fibers with controllable properties. Biomacromolecules 12(5):1504–1511. doi:10.1021/bm1014624
PubMed
CAS
Google Scholar
Klok HA, Rosler A, Gotz G, Mena-Osteritz E, Bauerle P (2004) Synthesis of a silk-inspired peptide oligothiophene conjugate. Org Biomol Chem 2(24):3541–3544. doi:10.1039/B415454a
PubMed
CAS
Google Scholar
Knight DP, Vollrath F (1999) Liquid crystals and flow elongation in a spider’s silk production line. Proc Biol Sci 266(1418):519–523. doi:10.1098/rspb.1999.0667
Google Scholar
Lang G, Jokisch S, Scheibel T (2013) Air filter devices including nonwoven meshes of electrospun recombinant spider silk proteins. J Vis Exp 75:e50492. doi:10.3791/50492
PubMed
Google Scholar
Lawrence BA, Vierra CA, Mooref AMF (2004) Molecular and mechanical properties of major ampullate silk of the black widow spider, Latrodectus hesperus. Biomacromolecules 5(3):689–695. doi:10.1021/Bm0342640
PubMed
CAS
Google Scholar
Lazaris A, Arcidiacono S, Huang Y, Zhou JF, Duguay F, Chretien N, Welsh EA, Soares JW, Karatzas CN (2002) Spider silk fibers spun from soluble recombinant silk produced in mammalian cells. Science 295(5554):472–476. doi:10.1126/science.1065780
PubMed
CAS
Google Scholar
Leal-Egana A, Scheibel T (2012) Interactions of cells with silk surfaces. J Mater Chem 22(29):14330–14336. doi:10.1039/C2jm31174g
CAS
Google Scholar
Leal-Egana A, Lang G, Mauerer C, Wickinghoff J, Weber M, Geimer S, Scheibel T (2012) Interactions of fibroblasts with different morphologies made of an engineered spider silk protein. Adv Eng Mater 14(3):B67–B75. doi:10.1002/adem.201180072
Google Scholar
Lee KS, Kim BY, Je YH, Woo SD, Sohn HD, Jin BR (2007) Molecular cloning and expression of the C-terminus of spider flagelliform silk protein from Araneus ventricosus. J Biosci 32(4):705–712. doi:10.1007/s12038-007-0070-8
PubMed
CAS
Google Scholar
Lewis RV, Hinman M, Kothakota S, Fournier MJ (1996) Expression and purification of a spider silk protein: a new strategy for producing repetitive proteins. Protein Expres Purif 7(4):400–406. doi:10.1006/prep.1996.0060
CAS
Google Scholar
Lin Z, Huang W, Zhang J, Fan JS, Yang D (2009) Solution structure of eggcase silk protein and its implications for silk fiber formation. Proc Natl Acad Sci USA 106(22):8906–8911. doi:10.1073/pnas.0813255106
PubMed
CAS
Google Scholar
Madani F, Lindberg S, Langel U, Futaki S, Graslund A (2011) Mechanisms of cellular uptake of cell-penetrating peptides. J Biophys 2011:10 p. doi:10.1155/2011/414729
Mello CM, Soares JW, Arcidiacono S, Butlers MM (2004) Acid extraction and purification of recombinant spider silk proteins. Biomacromolecules 5(5):1849–1852. doi:10.1021/Bm049815g
PubMed
CAS
Google Scholar
Menassa R, Hong Z, Karatzas CN, Lazaris A, Richman A, Brandle J (2004) Spider dragline silk proteins in transgenic tobacco leaves: accumulation and field production. Plant Biotechnol J 2(5):431–438. doi:10.1111/j.1467-7652.2004.00087.x
PubMed
CAS
Google Scholar
Mieszawska AJ, Nadkarni LD, Perry CC, Kaplan DL (2010) Nanoscale control of silica particle formation via silk-silica fusion proteins for bone regeneration. Chem Mater 22(20):5780–5785. doi:10.1021/Cm101940u
PubMed
CAS
Google Scholar
Morgan AW, Roskov KE, Lin-Gibson S, Kaplan DL, Becker ML, Simon CG Jr (2008) Characterization and optimization of RGD-containing silk blends to support osteoblastic differentiation. Biomaterials 29(16):2556–2563. doi:10.1016/j.biomaterials.2008.02.007
PubMed
CAS
Google Scholar
Motriuk-Smith D, Smith A, Hayashi CY, Lewis RV (2005) Analysis of the conserved N-terminal domains in major ampullate spider silk proteins. Biomacromolecules 6(6):3152–3159. doi:10.1021/bm050472b
PubMed
CAS
Google Scholar
Numata K, Kaplan DL (2010) Silk-based gene carriers with cell membrane destabilizing peptides. Biomacromolecules 11(11):3189–3195. doi:10.1021/Bm101055m
CAS
Google Scholar
Numata K, Subramanian B, Currie HA, Kaplan DL (2009) Bioengineered silk protein-based gene delivery systems. Biomaterials 30(29):5775–5784. doi:10.1016/j.biomaterials.2009.06.028
PubMed
CAS
Google Scholar
Numata K, Reagan MR, Goldstein RH, Rosenblatt M, Kaplan DL (2011) Spider silk-based gene carriers for tumor cell-specific delivery. Bioconjug Chem 22(8):1605–1610. doi:10.1021/bc200170u
PubMed
CAS
Google Scholar
Numata K, Mieszawska-Czajkowska AJ, Kvenvold LA, Kaplan DL (2012) Silk-based nanocomplexes with tumor-homing peptides for tumor-specific gene delivery. Macromol Biosci 12(1):75–82. doi:10.1002/mabi.201100274
PubMed
CAS
Google Scholar
Partis MD, Griffiths DG, Roberts GC, Beechey RB (1983) Cross-linking of protein by omega-maleimido alkanoyl N-hydroxysuccinimido esters. J Protein Chem 2(3):263–277. doi:10.1007/BF01025358
CAS
Google Scholar
Prince JT, Mcgrath KP, Digirolamo CM, Kaplan DL (1995) Construction, cloning, and expression of synthetic genes encoding spider dragline silk. Biochemistry 34(34):10879–10885. doi:10.1021/bi00034a022
PubMed
CAS
Google Scholar
Rammensee S, Slotta U, Scheibel T, Bausch AR (2008) Assembly mechanism of recombinant spider silk proteins. Proc Natl Acad Sci USA 105(18):6590–6595. doi:10.1073/pnas.0709246105
PubMed
CAS
Google Scholar
Rathore O, Sogah DY (2001) Self-assembly of beta-sheets into nanostructures by poly(alanine) segments incorporated in multiblock copolymers inspired by spider silk. J Am Chem Soc 123(22):5231–5239. doi:10.1021/Ja004030d
PubMed
CAS
Google Scholar
Rising A, Hjalm G, Engstrom W, Johansson J (2006) N-terminal nonrepetitive domain common to dragline, flagelliform, and cylindriform spider silk proteins. Biomacromolecules 7(11):3120–3124. doi:10.1021/bm060693x
PubMed
CAS
Google Scholar
Schacht K, Scheibel T (2011) Controlled hydrogel formation of a recombinant spider silk protein. Biomacromolecules 12(7):2488–2495. doi:10.1021/Bm200154k
PubMed
CAS
Google Scholar
Scheibel T (2004) Spider silks: recombinant synthesis, assembly, spinning, and engineering of synthetic proteins. Microb Cell Fact 3(1):14. doi:10.1186/1475-2859-3-14
PubMed
Google Scholar
Schmidt M, Romer L, Strehle M, Scheibel T (2007) Conquering isoleucine auxotrophy of Escherichia coli BLR(DE3) to recombinantly produce spider silk proteins in minimal media. Biotechnol Lett 29(11):1741–1744. doi:10.1007/s10529-007-9461-z
PubMed
CAS
Google Scholar
Seidel A, Liivak O, Jelinski LW (1998) Artificial spinning of spider silk. Macromolecules 31(19):6733–6736. doi:10.1021/ma9808880
CAS
Google Scholar
Seidel A, Liivak O, Calve S, Adaska J, Ji GD, Yang ZT, Grubb D, Zax DB, Jelinski LW (2000) Regenerated spider silk: processing, properties, and structure. Macromolecules 33(3):775–780. doi:10.1021/ma990893j
CAS
Google Scholar
Sletten EM, Bertozzi CR (2009) Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew Chem Int Ed 48(38):6974–6998. doi:10.1002/anie.200900942
CAS
Google Scholar
Spiess K, Wohlrab S, Scheibel T (2010) Structural characterization and functionalization of engineered spider silk films. Soft Matter 6(17):4168–4174. doi:10.1039/B927267d
CAS
Google Scholar
Sponner A, Unger E, Grosse F, Weisshart K (2004) Conserved C-termini of spidroins are secreted by the major ampullate glands and retained in the silk thread. Biomacromolecules 5(3):840–845. doi:10.1021/bm034378b
PubMed
CAS
Google Scholar
Sponner A, Vater W, Rommerskirch W, Vollrath F, Unger E, Grosse F, Weisshart K (2005) The conserved C-termini contribute to the properties of spider silk fibroins. Biochem Biophys Res Commun 338(2):897–902. doi:10.1016/j.bbrc.2005.10.048
PubMed
CAS
Google Scholar
Stark M, Grip S, Rising A, Hedhammar M, Engstrom W, Hjalm G, Johansson J (2007) Macroscopic fibers self-assembled from recombinant miniature spider silk proteins. Biomacromolecules 8(5):1695–1701. doi:10.1021/Bm070049y
PubMed
CAS
Google Scholar
Szela S, Avtges P, Valluzzi R, Winkler S, Wilson D, Kirschner D, Kaplan DL (2000) Reduction-oxidation control of beta-sheet assembly in genetically engineered silk. Biomacromolecules 1(4):534–542. doi:10.1021/Bm0055697
PubMed
CAS
Google Scholar
Teulé F, Aubé C, Ellison M, Abbott A (2003) Biomimetic manufacturing of customised novel fibre proteins for specialised applications. AUTEX Res J 3(4):160–165
Google Scholar
Teulé F, Furin WA, Cooper AR, Duncan JR, Lewis RV (2007) Modifications of spider silk sequences in an attempt to control the mechanical properties of the synthetic fibers. J Mater Sci 42(21):8974–8985. doi:10.1007/s10853-007-1642-6
Google Scholar
Teulé F, Cooper AR, Furin WA, Bittencourt D, Rech EL, Brooks A, Lewis RV (2009) A protocol for the production of recombinant spider silk-like proteins for artificial fiber spinning. Nat Protoc 4(3):341–355. doi:10.1038/nprot.2008.250
PubMed
Google Scholar
Teulé F, Addison B, Cooper AR, Ayon J, Henning RW, Benmore CJ, Holland GP, Yarger JL, Lewis RV (2011) Combining flagelliform and dragline spider silk motifs to produce tunable synthetic biopolymer fibers. Biopolymers 97(6):418–431. doi:10.1002/bip.21724
PubMed
Google Scholar
Thordarson P, Le Droumaguet B, Velonia K (2006) Well-defined protein-polymer conjugates-synthesis and potential applications. Appl Microbiol Biotechnol 73(2):243–254. doi:10.1007/s00253-006-0574-4
PubMed
CAS
Google Scholar
Valluzzi R, Szela S, Avtges P, Kirschner D, Kaplan D (1999) Methionine redox controlled crystallization of biosynthetic silk spidroin. J Phys Chem B 103(51):11382–11392. doi:10.1021/jp991363s
CAS
Google Scholar
Vendrely C, Scheibel T (2007) Biotechnological production of spider-silk proteins enables new applications. Macromol Biosci 7(4):401–409. doi:10.1002/mabi.200600255
PubMed
CAS
Google Scholar
Vendrely C, Ackerschott C, Roemer L, Scheibel T (2008) Molecular design of performance proteins with repetitive sequences: recombinant flagelliform spider silk as basis for biomaterials. Methods Mol Biol 474:3–14. doi:10.1007/978-1-59745-480-3_1
PubMed
CAS
Google Scholar
Vollrath F, Madsen B, Shao ZZ (2001) The effect of spinning conditions on the mechanics of a spider’s dragline silk. Proc R Soc Lond B 268(1483):2339–2346. doi:10.1098/rspb.2001.1590
CAS
Google Scholar
Wang M, Yu JH, Kaplan DL, Rutledge GC (2006) Production of submicron diameter silk fibers under benign processing conditions by two-fluid electrospinning. Macromolecules 39(3):1102–1107. doi:10.1021/Ma0517749
CAS
Google Scholar
Wen HX, Lan XQ, Zhang YS, Zhao TF, Wang YJ, Kajiura Z, Nakagaki M (2010) Transgenic silkworms (Bombyx mori) produce recombinant spider dragline silk in cocoons. Mol Biol Rep 37(4):1815–1821. doi:10.1007/s11033-009-9615-2
PubMed
CAS
Google Scholar
Widmaier DM, Voigt CA (2010) Quantification of the physiochemical constraints on the export of spider silk proteins by Salmonella type III secretion. Microb Cell Fact 9:78. doi:10.1186/1475-2859-9-78
PubMed
Google Scholar
Widmaier DM, Tullman-Ercek D, Mirsky EA, Hill R, Govindarajan S, Minshull J, Voigt CA (2009) Engineering the Salmonella type III secretion system to export spider silk monomers. Mol Syst Biol 5:309. doi:10.1038/msb.2009.62
PubMed
Google Scholar
Winkler S, Szela S, Avtges P, Valluzzi R, Kirschner DA, Kaplan D (1999) Designing recombinant spider silk proteins to control assembly. Int J Biol Macromol 24(2–3):265–270. doi:10.1016/S0141-8130(98)00088-9
PubMed
CAS
Google Scholar
Winkler S, Wilson D, Kaplan DL (2000) Controlling beta-sheet assembly in genetically engineered silk by enzymatic phosphorylation/dephosphorylation. Biochemistry 39(41):12739–12746. doi:10.1021/Bi001335w
PubMed
CAS
Google Scholar
Winningham MJ, Sogah DY (1997) A modular approach to polymer architecture control via catenation of prefabricated biomolecular segments: polymers containing parallel beta-sheets templated by a phenoxathiin-based reverse turn mimic. Macromolecules 30(4):862–876. doi:10.1021/ma960804s
CAS
Google Scholar
Wohlrab S, Mueller S, Schmidt A, Neubauer S, Kessler H, Leal-Egana A, Scheibel T (2012) Cell adhesion and proliferation on RGD-modified recombinant spider silk proteins. Biomaterials 33(28):6650–6659. doi:10.1016/j.biomaterials.2012.05.069
PubMed
CAS
Google Scholar
Wong Po Foo C, Patwardhan SV, Belton DJ, Kitchel B, Anastasiades D, Huang J, Naik RR, Perry CC, Kaplan DL (2006) Novel nanocomposites from spider silk-silica fusion (chimeric) proteins. Proc Natl Acad Sci USA 103(25):9428–9433. doi:10.1073/pnas.0601096103
PubMed
Google Scholar
Xia XX, Ki CS, Park YH, Kaplan DL, Lee SY (2010) Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in a strong fiber. Proc Natl Acad Sci USA 107(32):14059–14063. doi:10.1073/pnas.1003366107
PubMed
CAS
Google Scholar
Xu M, Lewis RV (1990) Structure of a protein superfiber – spider dragline silk. Proc Natl Acad Sci USA 87(18):7120–7124. doi:10.1073/pnas.87.18.7120
PubMed
CAS
Google Scholar
Xu HT, Fan BL, Yu SY, Huang YH, Zhao ZH, Lian ZX, Dai YP, Wang LL, Liu ZL, Fei J, Li N (2007) Construct synthetic gene encoding artificial spider dragline silk protein and its expression in milk of transgenic mice. Anim Biotechnol 18(1):1–12. doi:10.1080/10495390601091024
PubMed
Google Scholar
Yang JJ, Barr LA, Fahnestock SR, Liu ZB (2005) High yield recombinant silk-like protein production in transgenic plants through protein targeting. Transgenic Res 14(3):313–324. doi:10.1007/s11248-005-0272-5
PubMed
CAS
Google Scholar
Zarkoob S, Eby RK, Reneker DH, Hudson SD, Ertley D, Adams WW (2004) Structure and morphology of electrospun silk nanofibers. Polymer 45(11):3973–3977. doi:10.1016/j.polymer.2003.10.102
CAS
Google Scholar
Zhou CZ, Confalonieri F, Jacquet M, Perasso R, Li ZG, Janin J (2001) Silk fibroin: structural implications of a remarkable amino acid sequence. Proteins: Struct Funct Genet 44(2):119–122. doi:10.1002/prot.1078
CAS
Google Scholar
Zhou CC, Leng BX, Yao JR, Qian J, Chen X, Zhou P, Knight DP, Shao ZZ (2006) Synthesis and characterization of multiblock copolymers based on spider dragline silk proteins. Biomacromolecules 7(8):2415–2419. doi:10.1021/Bm060199t
PubMed
CAS
Google Scholar
Zorko M, Langel U (2005) Cell-penetrating peptides: mechanism and kinetics of cargo delivery. Adv Drug Deliv Rev 57(4):529–545. doi:10.1016/j.addr.2004.10.010
PubMed
CAS
Google Scholar