Abstract
Issues of fossil fuel and plastic pollution are shifting public demand toward biopolymer-based textiles. For instance, silk, which has been traditionally used during at least 5 milleniums in China, is re-emerging in research and industry with the development of high-tech spinning methods. Various arthropods, e.g. insects and arachnids, produce silky proteinic fiber of unique properties such as resistance, elasticity, stickiness and toughness, that show huge potential for biomaterial applications. Compared to synthetic analogs, silk presents advantages of low density, degradability and versatility. Electrospinning allows the creation of nonwoven mats whose pore size and structure show unprecedented characteristics at the nanometric scale, versus classical weaving methods or modern techniques such as melt blowing. Electrospinning has recently allowed to produce silk scaffolds, with applications in regenerative medicine, drug delivery, depollution and filtration. Here we review silk production by the spinning apparatus of the silkworm Bombyx mori and the spiders Aranea diadematus and Nephila Clavipes. We present the biotechnological procedures to get silk proteins, and the preparation of a spinning dope for electrospinning. We discuss silk’s mechanical properties in mats obtained from pure polymer dope and multi-composites. This review highlights the similarity between two very different yarn spinning techniques: biological and electrospinning processes.









Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Agarwal S, Wendorff JH, Greiner A (2008) Use of electrospinning technique for biomedical applications. Polymer (Guildf) 49:5603–5621. https://doi.org/10.1016/j.polymer.2008.09.014
Agnarsson I, Boutry C, Wong S-CC et al (2009) Supercontraction forces in spider dragline silk depend on hydration rate. Zool 112:325–331. https://doi.org/10.1016/j.zool.2008.11.003
Aguilar MR, San Román J (2019) Smart polymers and their applications. Woodhead Publishing, Cambridge
Akiyama M, Morofuji Y, Kamohara T et al (2006) Flexible piezoelectric pressure sensors using oriented aluminum nitride thin films prepared on polyethylene terephthalate films. J Appl Phys 100:114318. https://doi.org/10.1063/1.2401312
Altman GH, Diaz F, Jakuba C et al (2003) Silk-based biomaterials. Biomaterials 24:401–416. https://doi.org/10.1016/s0142-9612(02)00353-8
Amiraliyan N, Nouri M, Kish MH (2010) Structural characterization and mechanical properties of electrospun silk fibroin nanofiber mats. Polym Sci Ser A 52:407–412. https://doi.org/10.1134/S0965545x10040097
Andersen SO (1970) Amino acid composition of spider silks. Comp Biochem Physiol 35:705–711. https://doi.org/10.1016/0010-406x(70)90988-6
Anton AM, Kremer F (2016) Spider silk and its application in technology and medicine. In: Equipment. https://analyticalscience.wiley.com/do/https://doi.org/10.1002/gitlab.15278/full/. Accessed 14 Nov 2020
Asrar J, Hill JC (2002) Biosynthetic processes for linear polymers. J Appl Polym Sci 83:457–483. https://doi.org/10.1002/app.2253
Ayoub NA, Garb JE, Tinghitella RM et al (2007) Blueprint for a high-performance biomaterial: full-length spider dragline silk genes. PLoS ONE 2:e514. https://doi.org/10.1371/journal.pone.0000514
Ayutsede J, Gandhi M, Sukigara S et al (2005) Regeneration of Bombyx mori silk by electrospinning. Part 3: characterization of electrospun nonwoven mat. Polymer (Guildf) 46:1625–1634. https://doi.org/10.1016/j.polymer.2004.11.029
Ayutsede J, Gandhi M, Sukigara S et al (2006) Carbon nanotube reinforced Bombyx mori silk nanofibers by the electrospinning process. Biomacromol 7:208–214. https://doi.org/10.1021/bm0505888
Aznar-Cervantes S, Roca MI, Martinez JG et al (2012) Fabrication of conductive electrospun silk fibroin scaffolds by coating with polypyrrole for biomedical applications. Bioelectrochemistry 85:36–43. https://doi.org/10.1016/j.bioelechem.2011.11.008
Aznar-Cervantes S, Aliste M, Garrido I et al (2020) Electrospun silk fibroin/TiO2 mats. Preparation, characterization and efficiency for the photocatalytic solar treatment of pesticide polluted water. RSC Adv 10:1917–1924. https://doi.org/10.1039/c9ra09239k
Babu KM (2018) Silk: processing, properties and applications. Woodhead Publishing, Cambridge
Basu A (2015) Advances in silk science and technology. Woodhead Publishing, Cambridge
Bauer F, Wohlrab S, Scheibel T (2013) Controllable cell adhesion, growth and orientation on layered silk protein films. Biomater Sci 1:1244–1249. https://doi.org/10.1039/c3bm60114e
Bell FI, McEwen IJ, Viney C (2002) Supercontraction stress in wet spider dragline. Nature 416:37. https://doi.org/10.1038/416037a
Benyus JM (1997) Biomimicry: innovation inspired by nature. Harper Perennia, New York
Bhattacharyya D, Maitrot P, Fakirov S (2009) Polyamide 6 single polymer composites. Express Polym Lett 3:525–532. https://doi.org/10.3144/expresspolymlett.2009.65
Blackledge TA, Boutry C, Wong S-C et al (2009) How super is supercontraction? Persistent versus cyclic responses to humidity in spider dragline silk. J Exp Biol 212:1981–1989. https://doi.org/10.1242/jeb.028944
Blackledge TA, Pérez-Rigueiro J, Plaza GR et al (2012) Sequential origin in the high performance properties of orb spider dragline silk. Sci Rep 2:782. https://doi.org/10.1038/srep00782
Blamires SJ, Sellers WI (2019) Modelling temperature and humidity effects on web performance: implications for predicting orb-web spider (Argiope spp.) foraging under Australian climate change scenarios. Conserv Physiol 7:coz083. https://doi.org/10.1093/conphys/coz083
Bognitzki M, Czado W, Frese T et al (2001) Nanostructured fibers via electrospinning. Adv Mater 13:70–72. https://doi.org/10.1002/1521-4095(200101)13:1%3c70::Aid-Adma70%3e3.3.Co;2-8
Bonino MJ (2003) Material properties of spider silk. University of Rochester, Rochester, NY
Boutry C, Blackledge TA (2010) Evolution of supercontraction in spider silk: structure-function relationship from tarantulas to orb-weavers. J Exp Biol 213:3505–3514. https://doi.org/10.1242/jeb.046110
Boutry C, Blackledge TA (2013) Wet webs work better: humidity, supercontraction and the performance of spider orb webs. J Exp Biol 216:3606–3610. https://doi.org/10.1242/jeb.084236
Cao J, Akkerman R, Boisse P et al (2008) Characterization of mechanical behavior of woven fabrics: Experimental methods and benchmark results. Compos Part a Appl Sci Manuf 39:1037–1053. https://doi.org/10.1016/j.compositesa.2008.02.016
Casas J (2011) Spider physiology and behaviour: behaviour. Academic Press, Cambridge
Chakravorty R, Dutta P, Ghose J (2010) Sericulture and traditional craft of silk weaving in Assam. Indian J Tradit Knowl 9:378–385
Chen X, Shao Z, Vollrath F (2006) The spinning processes for spider silk. Soft Matter 2:448–451. https://doi.org/10.1039/b601286h
Chen F, Porter D, Vollrath F (2012) Silk cocoon (Bombyx mori): multi-layer structure and mechanical properties. Acta Biomater 8:2620–2627. https://doi.org/10.1016/j.actbio.2012.03.043
Chomachayi MD, Solouk A, Mirzadeh H (2016) Electrospun silk-based nanofibrous scaffolds: fiber diameter and oxygen transfer. Prog Biomater 5:71–80. https://doi.org/10.1007/s40204-016-0046-6
Chung H, Kim TY, Lee SY (2012) Recent advances in production of recombinant spider silk proteins. Curr Opin Biotechnol 23:957–964. https://doi.org/10.1016/j.copbio.2012.03.013
Clements LL (1998) Organic fibers. In: Peters ST (ed) Handbook of Composites. Springer, Berlin, pp 202–241
Collins PG, Avouris P (2000) Nanotubes for electronics. Sci Am 283:62–69. https://doi.org/10.1038/scientificamerican1200-62
Craig CL (1997) Evolution of arthropod silks. Annu Rev Entomol 42:231–267. https://doi.org/10.1146/annurev.ento.42.1.231
Craig CL, Brunetta L (2010) Spider silk: evolution and 400 million years of spinning, waiting, snagging, and mating. Yale University Press, London
Craig CL, Riekel C (2002) Comparative architecture of silks, fibrous proteins and their encoding genes in insects and spiders. Comp Biochem Physiol Part B Biochem Mol Biol 133:493–507
Cunniff PM, Fossey SA, Auerbach MA et al (1994) Mechanical and thermal properties of dragline silk from the spider Nephila clavipes. Polym Adv Technol 5:401–410. https://doi.org/10.1002/pat.1994.220050801
Das S, Bhowmick M, Chattopadhyay SK, Basak S (2015) Application of biomimicry in textiles. Curr Sci 109:893–901. https://doi.org/10.18520/v109/i5/893-901
Dayyoub T, Maksimkin AV, Kaloshkin S et al (2019) The structure and mechanical properties of the uhmwpe films modified by the mixture of graphene nanoplates with polyaniline. Polymers (Basel) 11:23. https://doi.org/10.3390/polym11010023
De Araújo M (2011) Natural and man-made fibres: physical and mechanical properties. In: Fangueiro R (ed) Fibrous and composite materials for civil engineering applications. Elsevier, Amsterdam, pp 3–28. https://doi.org/10.1533/9780857095583.1.3
Desai M, Di R, Fan H (2019) Application of Biolayer Interferometry for Studying Protein-Protein Interactions in Transcription. J Vis Exp. https://doi.org/10.3791/59687
DeSimone E, Aigner TB, Humenik M et al (2020) Aqueous electrospinning of recombinant spider silk proteins. Mater Sci Eng C Mater Biol Appl 106:110145. https://doi.org/10.1016/j.msec.2019.110145
Dionne J, Lefèvre T, Bilodeau P et al (2017) A quantitative analysis of the supercontraction-induced molecular disorientation of major ampullate spider silk. Phys Chem Chem Phys 19:31487–31498. https://doi.org/10.1039/C7CP05739C
Doblhofer E, Heidebrecht A, Scheibel T (2015) To spin or not to spin: spider silk fibers and more. Appl Microbiol Biotechnol 99:9361–9380. https://doi.org/10.1007/s00253-015-6948-8
Du N, Yang Z, Liu XY et al (2011) Structural Origin of the Strain-Hardening of Spider Silk. Adv Funct Mater 21:772–778. https://doi.org/10.1002/adfm.201001397
Eisoldt L, Smith A, Scheibel T (2011) Decoding the secrets of spider silk. Mater Today 14:80–86. https://doi.org/10.1016/S1369-7021(11)70057-8
Elices M, Plaza GR, Pérez-Rigueiro J et al (2011) The hidden link between supercontraction and mechanical behavior of spider silks. J Mech Behav Biomed Mater 4:658–669. https://doi.org/10.1016/j.jmbbm.2010.09.008
Emile O, Le Floch A, Vollrath F (2006) Biopolymers: shape memory in spider draglines. Nature 440:621. https://doi.org/10.1038/440621a
Feng XX, Zhou L, Zhu HL, Chen JY (2010) Study on the properties of Nano-TiO2 particles modified silk fibroin porous films. J Appl Polym Sci 116:468–472. https://doi.org/10.1002/app.31527
Fukada E (1956) On the piezoelectric effect of silk fibers. J Phys Soc Japan 11:1301A-1301A. https://doi.org/10.1143/JPSJ.11.1301A
Garb JE, Ayoub NA, Hayashi CY (2010) Untangling spider silk evolution with spidroin terminal domains. BMC Evol Biol 10:243. https://doi.org/10.1186/1471-2148-10-243
Gellynck K, Verdonk P, Forsyth R et al (2008) Biocompatibility and biodegradability of spider egg sac silk. J Mater Sci Mater Med 19:2963–2970. https://doi.org/10.1007/s10856-007-3330-0
Gorrasi G, Sorrentino A, Lichtfouse E (2020) Back to plastic pollution in COVID times. Environ Chem Lett. https://doi.org/10.1007/s10311-020-01129-z
Guinea GV, Elices M, Perez-Rigueiro J et al (2005) Stretching of supercontracted fibers: a link between spinning and the variability of spider silk. J Exp Biol 208:25–30. https://doi.org/10.1242/jeb.01344
Gulrajani ML (1992) Degumming of silk. Rev Prog Color Relat Top 22:79–89. https://doi.org/10.1111/j.1478-4408.1992.tb00091.x
Guo Y, Shen Y-HH, Sun W et al (2011) Nucleotide diversity and selection signature in the domesticated silkworm, Bombyx mori, and wild silkworm. Bombyx mandarina J Insect Sci 11:155. https://doi.org/10.1673/031.011.15501
Guyton AC (1991) Blood pressure control–special role of the kidneys and body fluids. Science (80-) 252:1813–1816. https://doi.org/10.1126/science.2063193
Hao W, Zhang X, Tian Y (2019) Thermal, mechanical, and microstructural study of PBO fiber during carbonization. Mater 12:608. https://doi.org/10.3390/ma12040608
He J-HH, Liu Y, Xu L et al (2008) BioMimic fabrication of electrospun nanofibers with high-throughput. Chaos Solitons Fractals 37:643–651. https://doi.org/10.1016/j.chaos.2007.11.028
Heim M, Keerl D, Scheibel T (2009) Spider silk: from soluble protein to extraordinary fiber. Angew Chem Int Ed Engl 48:3584–3596. https://doi.org/10.1002/anie.200803341
Herbort AF, Sturm MT, Fiedler S et al (2018) Alkoxy-silyl induced agglomeration: a new approach for the sustainable removal of microplastic from aquatic systems. J Polym Environ 26:4258–4270. https://doi.org/10.1007/s10924-018-1287-3
Holland C, Vollrath F, Ryan AJ, Mykhaylyk OO (2012) Silk and synthetic polymers: reconciling 100 degrees of separation. Adv Mater 24(104):105–109. https://doi.org/10.1002/adma.201103664
Holland C, Numata K, Rnjak-Kovacina J, Seib FP (2019) The biomedical use of silk: past, present Future. Adv Healthc Mater 8:1800465. https://doi.org/10.1002/adhm.201800465
Huang WM, Ding Z, Wang CC et al (2010) Shape memory materials. Mater Today 13:54–61. https://doi.org/10.1016/S1369-7021(10)70128-0
Huang X, Liu G, Wang X (2012) New secrets of spider silk: exceptionally high thermal conductivity and its abnormal change under stretching. Adv Mater 24:1482–1486. https://doi.org/10.1002/adma.201104668
Huang WW, Ling SJ, Li CM et al (2018) Silkworm silk-based materials and devices generated using bio-nanotechnology. Chem Soc Rev 47:6486–6504. https://doi.org/10.1039/c8cs00187a
Inouye K, Kurokawa M, Nishikawa S, Tsukada M (1998) Use of Bombyx mori silk fibroin as a substratum for cultivation of animal cells. J Biochem Biophys Methods 37:159–164. https://doi.org/10.1016/S0165-022x(98)00024-4
Jamaluddin NA, Sheikh S, Hanan UA, et al (2019) Comparison of tensile properties between natural fibres and inorganic fibres for strengthening timber structures. In: MATEC web of conferences. p 1010
Jin H-JJ, Chen J, Karageorgiou V et al (2004) Human bone marrow stromal cell responses on electrospun silk fibroin mats. Biomaterials 25:1039–1047. https://doi.org/10.1016/s0142-9612(03)00609-4
Jirsak O, Sanetrnik F, Lukas D et al (2009) Method of nanofibres production from a polymer solution using electrostatic spinning and a device for carrying out the method. U.S. Patent and Trademark Office, Washington
Jokisch S, Neuenfeldt M, Scheibel T (2017) Silk-based fine dust filters for air filtration. Adv Sustain Syst 1:1700079. https://doi.org/10.1002/adsu.201700079
Kandas I, Shehata N, Hassounah I et al (2018) Optical fluorescent spider silk electrospun nanofibers with embedded cerium oxide nanoparticles. J Nanophotonics 12:26016. https://doi.org/10.1117/1.Jnp.12.026016
Karan SK, Maiti S, Kwon O et al (2018) Nature driven spider silk as high energy conversion efficient bio-piezoelectric nanogenerator. Nano Energy 49:655–666. https://doi.org/10.1016/j.nanoen.2018.05.014
Karthik T, Rathinamoorthy R (2017) Sustainable silk production. In: Muthu SS (ed) Sustainable fibres and textiles. Elsevier, Amsterdam, pp 135–170
Ki CS, Park SY, Kim HJ et al (2008) Development of 3-D nanofibrous fibroin scaffold with high porosity by electrospinning: implications for bone regeneration. Biotechnol Lett 30:405–410. https://doi.org/10.1007/s10529-007-9581-5
Kim K-HH, Jeong L, Park H-NN et al (2005) Biological efficacy of silk fibroin nanofiber membranes for guided bone regeneration. J Biotechnol 120:327–339. https://doi.org/10.1016/j.jbiotec.2005.06.033
King JA, Tucker KW, Vogt BD et al (2004) Electrically and thermally conductive nylon 6,6. Polym Compos 20:643–654. https://doi.org/10.1002/pc.10387
Kirchhoff MM (2003) Promoting green engineering through green chemistry. Env Sci Technol 37:5349–5353. https://doi.org/10.1021/es0346072
Kirstein T (2013) Multidisciplinary know-how for smart-textiles developers. Elsevier, Amsterdam
Knapczyk-Korczak J, Ura DP, Gajek M et al (2020) Fiber-based composite meshes with controlled mechanical and wetting properties for water harvesting. ACS Appl Mater Interfaces 12:1665–1676. https://doi.org/10.1021/acsami.9b19839
Krishna C, Pillai S, Sharma CP (2010) Absorbable polymeric surgical sutures: chemistry production, properties, biodegradability, and performance. J Biomater Appl. https://doi.org/10.1177/0885328210384890
Kuhbier JW, Reimers K, Kasper C et al (2011) First investigation of spider silk as a braided microsurgical suture. J Biomed Mater Res Part B Appl Biomater 97:381–387. https://doi.org/10.1002/jbm.b.31825
Kumar B, Singh KP (2014) Fatigueless response of spider draglines in cyclic torsion facilitated by reversible molecular deformation. Appl Phys Lett 105:213704. https://doi.org/10.1063/1.4902942
Kumar S, Dang TD, Arnold FE et al (2002) Synthesis, structure, and properties of PBO/SWNT composites & Macromolecules 35:9039–9043. https://doi.org/10.1021/ma0205055
Kumar B, Thakur A, Panda B, Singh KP (2014) Optically probing torsional superelasticity in spider silks. Appl Phys Lett 103:201910. https://doi.org/10.1063/1.4831766. https://aip.scitation.org/doi/10.1063/1.4902942
Kumar R, Priyanka M, Kartikey M, Aniruddha V (2018) Electrospinning production of nanofibrous membranes. Environ Chem Lett. https://doi.org/10.1007/s10311-018-00838-w
Kumar S, Zindani D, Bhowmik S (2020) Investigation of mechanical and viscoelastic properties of flax- and ramie-reinforced green composites for orthopedic implants. J Mater Eng Perform. https://doi.org/10.1007/s11665-020-04845-3
Laity PR, Gilks SE, Holland C (2015) Rheological behaviour of native silk feedstocks. Polymer (Guildf) 67:28–39. https://doi.org/10.1016/j.polymer.2015.04.049
Lang G, Jokisch S, Scheibel T (2013) Air filter devices including nonwoven meshes of electrospun recombinant spider silk proteins. J Vis Exp. https://doi.org/10.3791/50492
Lauterbach AY, Scheibel T (2015) Life cycle assessment of spider silk nonwoven meshes in an air filtration device. Green Mater 3:15–24. https://doi.org/10.1680/gmat.14.00011
Leach MK, Feng Z-QQ, Tuck SJ, Corey JM (2011) Electrospinning fundamentals: optimizing solution and apparatus parameters. J Vis Exp. https://doi.org/10.3791/2494
Leal-Egaña A, Lang G, Mauerer C et al (2011) Interactions of fibroblasts with different morphologies made of an engineered spider silk protein. Adv Eng Mater 14:B67–B75. https://doi.org/10.1002/adem.201180072
Lerman MJ, Lembong J, Muramoto S et al (2018) The evolution of polystyrene as a cell culture material. Tissue Eng Part B Rev 24:359–372. https://doi.org/10.1089/ten.TEB.2018.0056
Li X-G, Huang M-R (1999) Thermal degradation of Kevlar fiber by high-resolution thermogravimetry. J Appl Polym Sci 71:565–571. https://doi.org/10.1002/(SICI)1097-4628(19990124)71:4%3c565::AID-APP7%3e3.0.CO;2-PCitation
Li D, Xia Y (2004) Electrospinning of nanofibers: reinventing the wheel? Adv Mater 16:1151–1170. https://doi.org/10.1002/adma.200400719
Li M, Ogiso M, Minoura N (2003) Enzymatic degradation behavior of porous silk fibroin sheets. Biomaterials 24:357–365. https://doi.org/10.1016/s0142-9612(02)00326-5
Lin J, Wang X, Ding B et al (2012) Biomimicry via Electrospinning. Crit Rev Solid State Mater Sci 37:94–114. https://doi.org/10.1080/10408436.2011.627096
Liu X, Zhang K-Q (2014) Silk fiber—molecular formation mechanism, structure-property relationship and advanced applications. Oligomerization Chem Biol Compd. https://doi.org/10.5772/57611
Liu D, Yu L, He Y et al (2017) Peculiar torsion dynamical response of spider dragline silk. Appl Phys Lett 111:13701. https://doi.org/10.1063/1.4990676
Lu Q, Zhang B, Li M et al (2011) Degradation mechanism and control of silk fibroin. Biomacromol 12:1080–1086. https://doi.org/10.1021/bm101422j
Mandal BB, Kundu SC (2008) A novel method for dissolution and stabilization of non-mulberry silk gland protein fibroin using anionic surfactant sodium dodecyl sulfate. Biotechnol Bioeng 99:1482–1489. https://doi.org/10.1002/bit.21699
Martins A, Araújo JV, Reis RL et al (2007) Electrospun nanostructured scaffolds for tissue engineering applications. Nanomedicine (Lond) 2:929–942. https://doi.org/10.2217/17435889.2.6.929
Meechaisue C, Wutticharoenmongkol P, Waraput R et al (2007) Preparation of electrospun silk fibroin fiber mats as bone scaffolds: a preliminary study. Biomed Mater 2:181–188. https://doi.org/10.1088/1748-6041/2/3/003
Meinel AJ, Kubow KE, Klotzsch E et al (2009) Optimization strategies for electrospun silk fibroin tissue engineering scaffolds. Biomaterials 30:3058–3067. https://doi.org/10.1016/j.biomaterials.2009.01.054
Melke J, Midha S, Ghosh S et al (2016) Silk fibroin as biomaterial for bone tissue engineering. Acta Biomater 31:1–16. https://doi.org/10.1016/j.actbio.2015.09.005
Merrit JL et al. (1992) Silk: history, cultivation, and processing. In: Silk: Harper’s Ferry Regional Textile Group, 11th Symposium, 12–13 November 1992, National Museum of American History
Mhuka V, Dube S, Nindi MM (2013) Chemical, structural and thermal properties of Gonometa postica silk fibroin, a potential biomaterial. Int J Biol Macromol 52:305–311. https://doi.org/10.1016/j.ijbiomac.2012.09.010
Min B-MM, Lee G, Kim SH et al (2004) Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials 25:1289–1297. https://doi.org/10.1016/j.biomaterials.2003.08.045
Minoura N, Aiba S-I, Higuchi M et al (1995) Attachment and growth of fibroblast cells on silk fibroin. Biochem Biophys Res Commun 208:511–516. https://doi.org/10.1006/bbrc.1995.1368
Mitchell GR, Tojeira A (2013) Role of Anisotropy in Tissue Engineering. Procedia Eng 59:117–125. https://doi.org/10.1016/j.proeng.2013.05.100
Mohammadzadehmoghadam S, Dong Y (2019) Fabrication and Characterization of Electrospun Silk Fibroin/Gelatin Scaffolds Crosslinked With Glutaraldehyde Vapor. Front Mater 6:1–12. https://doi.org/10.3389/fmats.2019.00091
Monteiro SN, Satyanarayana KG, Lopes FPD (2010) High strength natural fibers for improved polymer matrix composites. Materials Science Forum. Trans Tech Publications, Switzerland, pp 961–966. http://www.scientific.net/MSF.638-642.961
Müller-Herrmann S, Scheibel T (2015) Enzymatic degradation of films, particles, and nonwoven meshes made of a recombinant spider silk protein. ACS Biomater Sci Eng 1:247–259. https://doi.org/10.1021/ab500147u
Nentwig W (2012) Ecophysiology of spiders. Springer Science & Business Media, Berlin
Neukirch et al (2020) La mécanique des toiles d’araignées
Neukirch S, Antkowiak A, Rollard C, Vollrath F (2017) Le treuil élastocapillaire dans les toiles d’araignées
Nova A, Keten S, Pugno NM et al (2010) Molecular and nanostructural mechanisms of deformation, strength and toughness of spider silk fibrils. Nano Lett 10:2626–2634. https://doi.org/10.1021/nl101341w
Numata K, Kaplan DL (2010) Silk-based delivery systems of bioactive molecules. Adv Drug Deliv Rev 62:1497–1508. https://doi.org/10.1016/j.addr.2010.03.009
Nune SK, Rama KS, Dirisala VR, Chavali MY (2017) Electrospinning of collagen nanofiber scaffolds for tissue repair and regeneration. In: Ficai D, Grumezescu AM (eds) Nanostructures for novel therapy. Elsevier, pp 281–311. https://www.sciencedirect.com/book/9780323461429/nanostructures-for-noveltherapy#:~:text=Molecular%20nanostructures%20with%20well%2Ddefined,biomedical%20applications%20than%20linear%20polymers
Ogawa T, Mukai H, Osawa S (1998) Mechanical properties of ultrahigh-molecular-weight polyethylene fiber-reinforced PE composites. J Appl Polym Sci 68:1431–1439. https://doi.org/10.1002/(sici)1097-4628(19980531)68:9%3c1431::Aid-app7%3e3.0.Co;2-c
Ohgo K, Zhao C, Kobayashi M, Asakura T (2003) Preparation of non-woven nanofibers of Bombyx mori silk, Samia cynthia ricini silk and recombinant hybrid silk with electrospinning method. Polymer (Guildf) 44:841–846. https://doi.org/10.1016/s0032-3861(02)00819-4
Opell BD, Lipkey GK, Hendricks ML, Vito ST (2009) Daily and seasonal changes in the stickiness of viscous capture threads in Argiope aurantia and Argiope trifasciata orb-webs. J Exp Zool A Ecol Genet Physiol 311:217–225. https://doi.org/10.1002/jez.526
Padervand M, Lichtfouse E, Robert D, Wang C (2020) Removal of microplastics from the environment. A Rev Environ Chem Lett 18:807–828. https://doi.org/10.1007/s10311-020-00983-1
Pang L, Ming J, Pan F, Ning X (2019) Fabrication of silk fibroin fluorescent nanofibers via electrospinning. Polym 11:986. https://doi.org/10.3390/polym11060986
Park SY, Ki CS, Park YH et al (2010) Electrospun silk fibroin scaffolds with macropores for bone regeneration: an in vitro and in vivo study. Tissue Eng Part A 16:1271–1279. https://doi.org/10.1089/ten.TEA.2009.0328
Pawar K, Welzel G, Haynl C et al (2019) Recombinant spider silk and collagen-based nerve guidance conduits support neuronal cell differentiation and functionality in vitro. ACS Appl Bio Mater 2:4872–4880. https://doi.org/10.1021/acsabm.9b00628
Peng Q, Zhang Y, Lu L et al (2016) Recombinant spider silk from aqueous solutions via a bio-inspired microfluidic chip. Sci Rep 6:36473. https://doi.org/10.1038/srep36473
Pereira RFP, Silva MM, de Zea BV (2015) Bombyx mori silk fibers: an outstanding family of materials. Macromol Mater Eng 300:1171–1198
Pérez-Rigueiro J, Viney C, Llorca J, Elices M (2000) Mechanical properties of single-brin silkworm silk. J Appl Polym Sci 75:1270–1277. https://doi.org/10.1002/(sici)1097-4628(20000307)75:10%3c1270::Aid-app8%3e3.0.Co;2-c
Pignatelli C, Perotto G, Nardini M et al (2018) Electrospun silk fibroin fibers for storage and controlled release of human platelet lysate. Acta Biomater 73:365–376. https://doi.org/10.1016/j.actbio.2018.04.025
Quintanilla J (1999) Microstructure and properties of random heterogeneous materials: A review of theoretical results. Polym Eng Sci 39:559–585. https://doi.org/10.1002/pen.11446
Raheel M (1994) Protective clothing; An Overview. In: Raheel M (ed) Protective clothing systems materials. Marcel Dekker Inc, New York, pp 1–23
Ramakrishna S (2005) An introduction to electrospinning and nanofibers. World Scientific, Singapore
Rangari VK, Yousuf M, Jeelani S et al (2008) Alignment of carbon nanotubes and reinforcing effects in nylon-6 polymer composite fibers. Nanotechnology 19:245703. https://doi.org/10.1088/0957-4484/19/24/245703
Reap J, Baumeister D, Bras B (2005) Holism, biomimicry and sustainable engineering. ASME 2005 International Mechanical Engineering Congress and Exposition. Orlando, Florida, pp 423–431
Romer L, Scheibel T, Römer L, Scheibel T (2008) The elaborate structure of spider silk: structure and function of a natural high performance fiber. Prion 2:154–161. https://doi.org/10.4161/pri.2.4.7490
Sahni V, Blackledge TA, Dhinojwala A (2011) Changes in the adhesive properties of spider aggregate glue during the evolution of cobwebs. Sci Rep 1:41. https://doi.org/10.1038/srep00041
Salehi S, Koeck K, Scheibel T (2020) Spider silk for tissue engineering applications. Molecules 25:737. https://doi.org/10.3390/molecules25030737
Sappati KK, Bhadra S (2018) Piezoelectric polymer and paper substrates: a review. Sensors (Basel) 18:3605. https://doi.org/10.3390/s18113605
Sasithorn N, Martinová L (2014) Fabrication of silk nanofibres with needle and roller electrospinning methods. J Nanomater 2014:1–9. https://doi.org/10.1155/2014/947315
Schafer-Nolte F, Hennecke K, Reimers K et al (2014) Biomechanics and biocompatibility of woven spider silk meshes during remodeling in a rodent fascia replacement model. Ann Surg 259:781–792. https://doi.org/10.1097/SLA.0b013e3182917677
Schneider A, Wang XY, Kaplan DL et al (2009) Biofunctionalized electrospun silk mats as a topical bioactive dressing for accelerated wound healing. Acta Biomater 5:2570–2578. https://doi.org/10.1016/j.actbio.2008.12.013
Seely L, Zimmerman M, McLaughlin J (2004) The use of Zylon fibers in ULDB tendons. Adv Sp Res 33:1736–1740. https://doi.org/10.1016/j.asr.2003.07.046. https://www.sciencedirect.com/science/article/abs/pii/S0273117703011542?via%3Dihub
Senthilkumar M, Anbumani N, Hayavadana J (2011) Elastane fabrics–a tool for stretch applications in sports. Indian J Fibre Text Res 36:300–307
Shao Z, Vollrath F (2002) Surprising strength of silkworm silk. Nature 418:741. https://doi.org/10.1038/418741a
Shear WA, Palmer JM, Coddington JA, Bonamo PM (1989) A devonian spinneret: early evidence of spiders and silk use. Science 246:479–481. https://doi.org/10.1126/science.246.4929.479
Shehata N, Hassounah I, Sobolciak P, et al (2019) Spider silk fibers: synthesis, characterization, and related biomedical applications. In: Grumezescu V, Grumezescu AM (eds) Materials for biomedical engineering. Elsevier, pp 289–307. https://www.sciencedirect.com/book/9780128168721/materialsfor-biomedical-engineering
Sheu H-SS, Phyu KW, Jean Y-CC et al (2004) Lattice deformation and thermal stability of crystals in spider silk. Int J Biol Macromol 34:325–331. https://doi.org/10.1016/j.ijbiomac.2004.09.004
Shi J, Yao D (2020) A simple process for making supercontraction fiber from polycaprolactone/elastomer blends. Polym Eng Sci 60:793–801. https://doi.org/10.1002/pen.25337
Shin S-HH, Purevdorj O, Castano O et al (2012) A short review: recent advances in electrospinning for bone tissue regeneration. J Tissue Eng 3:2041731412443530. https://doi.org/10.1177/2041731412443530
Smith MJ, Flowers TH, Lennard FJ (2014) Mechanical properties of wool and cotton yarns used in twenty-first century tapestry: Preparing for the future by understanding the present. Stud Conserv 60:375–383. https://doi.org/10.1179/2047058414y.0000000144
Soffer L, Wang X, Zhang X et al (2008) Silk-based electrospun tubular scaffolds for tissue-engineered vascular grafts. J Biomater Sci Polym Ed 19:653–664. https://doi.org/10.1163/156856208784089607
Stankus JJ, Freytes DO, Badylak SF, Wagner WR (2008) Hybrid nanofibrous scaffolds from electrospinning of a synthetic biodegradable elastomer and urinary bladder matrix. J Biomater Sci Polym Ed 19:635–652. https://doi.org/10.1163/156856208784089599
Steiner D, Lang G, Fischer L et al (2019) Intrinsic vascularization of recombinant eADF4(C16) spider silk matrices in the arteriovenous loop model. Tissue Eng Part A 25:1504–1513. https://doi.org/10.1089/ten.TEA.2018.0360
Steven E, Park JG, Paravastu A et al (2011) Physical characterization of functionalized spider silk: electronic and sensing properties. Sci Technol Adv Mater 12:55002. https://doi.org/10.1088/1468-6996/12/5/055002
Steven E, Saleh WR, Lebedev V et al (2013) Carbon nanotubes on a spider silk scaffold. Nat Commun 4:2435. https://doi.org/10.1038/ncomms3435
Steven E, Lebedev V, Laukhina E et al (2014) Silk/nano-material hybrid: properties and functions. APS 2014:45–012
Sukigara S, Gandhi M, Ayutsede J et al (2003) Regeneration of Bombyx mori silk by electrospinning—part 1: processing parameters and geometric properties. Polymer (Guildf) 44:5721–5727. https://doi.org/10.1016/s0032-3861(03)00532-9
Sukigara S, Gandhi M, Ayutsede J et al (2004) Regeneration of Bombyx mori silk by electrospinning. Part 2. process optimization and empirical modeling using response surface methodology. Polymer (Guildf) 45:3701–3708. https://doi.org/10.1016/j.polymer.2004.03.059
Sun B, Liang D, Li X, Chen P (2015) Nonvolatile bio-memristor fabricated with natural bio-materials from spider silk. J Mater Sci Mater Electron 27:3957–3962. https://doi.org/10.1007/s10854-015-4248-9
Suzuki Y, Gage LP, Brown DD (1972) The genes for silk fibroin in Bombyx mori. J Mol Biol 70:637–649. https://doi.org/10.1016/0022-2836(72)90563-3
Swanson BO, Anderson SP, DiGiovine C et al (2009) The evolution of complex biomaterial performance: the case of spider silk. Integr Comp Biol 49:21–31. https://doi.org/10.1093/icb/icp013
Takai H, Ozawa R, Takabayashi J et al (2018) Silkworms suppress the release of green leaf volatiles by mulberry leaves with an enzyme from their spinnerets. Sci Rep 8:11942. https://doi.org/10.1038/s41598-018-30328-6
Tanaka M, Moritaka Y (2004) Single bumper shields based on vectran fibers. Adv Sp Res 34:1076–1079. https://doi.org/10.1016/j.asr.2003.03.039
Tao W, Li M, Zhao C (2007) Structure and properties of regenerated Antheraea pernyi silk fibroin in aqueous solution. Int J Biol Macromol 40:472–478. https://doi.org/10.1016/j.ijbiomac.2006.11.006
Teule F, Addison B, Cooper AR et al (2012) Combining flagelliform and dragline spider silk motifs to produce tunable synthetic biopolymer fibers. Biopolymers 97:418–431. https://doi.org/10.1002/bip.21724
Thilagavathi G, Viju S (2015) Silk as a suture material. In: Basu A (ed) Advances in silk science and technology. Elsevier, pp 219–232. http://www.elsevier.com/books/advances-in-silk-science-and-technology/basu/978-1-78242-311-9
Thompson AN, Hynd PI (2009) Stress-strain properties of individual Merino wool fibres are minor contributors to variations in staple strength induced by genetic selection and nutritional manipulation. Anim Prod Sci 49:668–674. https://doi.org/10.1071/ea08203
Tokareva O, Jacobsen M, Buehler M et al (2014) Structure-function-property-design interplay in biopolymers: spider silk. Acta Biomater 10:1612–1626. https://doi.org/10.1016/j.actbio.2013.08.020
Varadarajan G, Venkatachalam P (2016) Sustainable textile dyeing processes. Environ Chem Lett 14:113–122. https://doi.org/10.1007/s10311-015-0533-3
Vendrely C, Scheibel T (2007) Biotechnological production of spider-silk proteins enables new applications. Macromol Biosci 7:401–409. https://doi.org/10.1002/mabi.200600255
Vepari C, Kaplan DL (2007) Silk as a Biomaterial. Prog Polym Sci 32:991–1007. https://doi.org/10.1016/j.progpolymsci.2007.05.013
Vierra C, Hsia Y, Gnesa E, et al (2011) Spider silk composites and applications. In: Cuppoletti J (ed) Metal, ceramic and polymeric composites for various uses. IntechOpen. https://www.intechopen.com/books/metal-ceramic-and-polymeric-composites-for-various-uses
Viney C (2009) From natural silks to new polymer fibres. J Text Inst 91:2–23. https://doi.org/10.1080/00405000008659539
Vollrath F, Edmonds DT (1989) Modulation of the mechanical properties of spider silk by coating with water. Nature 340:305–307. https://doi.org/10.1038/340305a0
Vollrath F, Knight DP (2001) Liquid crystalline spinning of spider silk. Nature 410:541–548. https://doi.org/10.1038/35069000
Vollrath F, Porter D (2006) Spider silk as archetypal protein elastomer. Soft Matter 2:377–385. https://doi.org/10.1039/b600098n
Wade LE (2015) Wound healing: cellular mechanisms alternative therapies and clinical outcomes. Nova Science Publishers, Incorporated, New York
Ward IM (2012) Structure and properties of oriented polymers. Springer Science & Business Media, Berlin
Wharram SE, Zhang X, Kaplan DL, McCarthy SP (2010) Electrospun silk material systems for wound healing. Macromol Biosci 10:246–257. https://doi.org/10.1002/mabi.200900274
Work RW (1977) Dimensions, birefringences, and force-elongation behavior of major and minor ampullate silk fibers from orb-web-spinning spiders—the effects of wetting on these properties. Text Res J 47:650–662. https://doi.org/10.1177/004051757704701003. https://journals.sagepub.com/doi/10.1177/004051757704701003
Wray LS, Hu X, Gallego J et al (2011) Effect of processing on silk-based biomaterials: reproducibility and biocompatibility. J Biomed Mater Res B Appl Biomater 99:89–101. https://doi.org/10.1002/jbm.b.31875
Wu M-C, Chan S-H, Lin T-H (2015) Fabrication and photocatalytic performance of electrospun PVA/silk/TiO2 nanocomposite textile. Funct Mater Lett 08:1540013. https://doi.org/10.1142/s1793604715400135
Wu Y, Shah DU, Wang B et al (2018) Biomimetic supramolecular fibers exhibit water-induced supercontraction. Adv Mater 30:e1707169. https://doi.org/10.1002/adma.201707169
Xu J, Dong Q, Yu Y et al (2018) Mass spider silk production through targeted gene replacement in Bombyx mori. Proc Natl Acad Sci U S A 115:8757–8762. https://doi.org/10.1073/pnas.1806805115
Yan L, Kasal B, Huang L (2016) A review of recent research on the use of cellulosic fibres, their fibre fabric reinforced cementitious, geo-polymer and polymer composites in civil engineering. Compos Part B Eng 92:94–132. https://doi.org/10.1016/j.compositesb.2016.02.002
Yang Y, Chen X, Shao Z et al (2005) Toughness of spider silk at high and low temperatures. Adv Mater 17:84–88. https://doi.org/10.1002/adma.200400344
Ye C, Ren J, Wang Y et al (2019) Design and fabrication of silk templated electronic yarns and applications in multifunctional textiles. Matter 1:1411–1425. https://doi.org/10.1016/j.matt.2019.07.016
Yi B, Zhang H, Yu Z et al (2018) Fabrication of high performance silk fibroin fibers via stable jet electrospinning for potential use in anisotropic tissue regeneration. J Mater Chem B 6:3934–3945. https://doi.org/10.1039/c8tb00535d
Yu H-SS, Shen Y-HH, Yuan G-XX et al (2011) Evidence of selection at melanin synthesis pathway loci during silkworm domestication. Mol Biol Evol 28:1785–1799. https://doi.org/10.1093/molbev/msr002
Yucel T, Cebe P, Kaplan DL (2011) Structural origins of silk piezoelectricity. Adv Funct Mater 21:779–785. https://doi.org/10.1002/adfm.201002077
Yükseloğlu SM, Çalişkan M, Çaliskan M (2015) Mechanical and thermal properties of wool waste fabric reinforced composites. Tekst ve Mühendis 22:14–20. https://doi.org/10.7216/130075992015229703
Zarkoob S, Eby RK, Reneker DH et al (2003) Structure and morphology of electrospun silk nanofibers. Polymer (Guildf) 45:3973–3977. https://doi.org/10.1016/j.polymer.2003.10.102
Zhang D, Chang J (2008) Electrospinning of three-dimensional nanofibrous tubes with controllable architectures. Nano Lett 8:3283–3287. https://doi.org/10.1021/nl801667s
Zhang X, Reagan MR, Kaplan DL (2009) Electrospun silk biomaterial scaffolds for regenerative medicine. Adv Drug Deliv Rev 61:988–1006. https://doi.org/10.1016/j.addr.2009.07.005
Zhang F, Zuo B, Fan Z et al (2012) Mechanisms and control of silk-based electrospinning. Biomacromol 13:798–804. https://doi.org/10.1021/bm201719s
Zhang C, Zhang D, Chen D, Li MA (2014) Bilayered scaffold based on RGD recombinant spider silk proteins for small diameter tissue engineering. Polym Compos 37:523–531. https://doi.org/10.1002/pc.23208
Zhang Q-H, Dong J, Wu D-Z (2018) Advanced polyimide fibers. In: Yang S-Y (ed) Advanced polyimide materials. Elsevier, pp 67–92. https://www.sciencedirect.com/book/9780128126400/advanced-polyimide-materials
Zhao H-P, Feng X-Q, Shi H-J (2006) Variability in mechanical properties of Bombyx mori silk. Mater Sci Eng C 27:675–683. https://doi.org/10.1016/j.msec.2006.06.031
Zhao L, Chen D, Yao Q, Li M (2017) Studies on the use of recombinant spider silk protein/polyvinyl alcohol electrospinning membrane as wound dressing. Int J Nanomedicine 12:8103–8114. https://doi.org/10.2147/IJN.S47256
Zhou S, Peng H, Yu X et al (2008) Preparation and characterization of a novel electrospun spider silk fibroin/poly(D, L-lactide) composite fiber. J Phys Chem B 112:11209–11216. https://doi.org/10.1021/jp800913k
Zhou J, Cao C, Ma X (2009) A novel three-dimensional tubular scaffold prepared from silk fibroin by electrospinning. Int J Biol Macromol 45:504–510. https://doi.org/10.1016/j.ijbiomac.2009.09.006
Zhu J, Zhu H, Njuguna J, Abhyankar H (2013) Recent development of flax fibres and their reinforced composites based on different polymeric matrices. Mater 6:5171–5198. https://doi.org/10.3390/ma6115171
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Belbéoch, C., Lejeune, J., Vroman, P. et al. Silkworm and spider silk electrospinning: a review. Environ Chem Lett 19, 1737–1763 (2021). https://doi.org/10.1007/s10311-020-01147-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10311-020-01147-x
Keywords
Profiles
- Fabien Salaün View author profile