Ivacaftor is an essential component of triple combination CFTR modulator therapy for pharmacological restoration of F508del-CFTR function and mucociliary clearance in cystic fibrosis airways. The cover image shows pseudocolored bead tracks that visualize mucociliary transport (MCT) velocity. MCT is determined from transport rates of fluorescent beads added on the surface of primary nasal epithelial cultures grown at air-liquid interface.
In asthma, airway epithelial remodeling is characterized by aberrant goblet cell metaplastic differentiation accompanied by epithelial cell hyperplasia and hypertrophy. These pathologic features in severe asthma indicate a loss of control of proliferation, cell size, differentiation, and migration. mTOR is a highly conserved pathway that regulates protein synthesis, cell size, and proliferation. We hypothesized that the balance between mTOR and autophagy regulates mucous cell metaplasia. Airways from individuals with severe asthma showed increased mTOR signaling by RPS6 phosphorylation, which was reproduced using an IL-13-activated model of primary human airway epithelial cells (hAECs). mTOR inhibition by rapamycin led to a decrease of IL-13-mediated cell hypertrophy, hyperplasia, and MUC5AC mucous metaplasia. BrdU labeling during IL-13-induced mucous metaplasia confirmed that mTOR was associated with increased basal-to-apical hAEC migration. mTOR activation by genetic deletion of Tsc2 in cultured mouse AECs increased IL-13-mediated hyperplasia, hypertrophy, and mucous metaplasia. Transcriptomic analysis of IL-13-stimulated hAEC identified mTOR-dependent expression of genes associated with epithelial migration and cytoskeletal organization. In summary, these findings point to IL-13-dependent and independent roles of mTOR signaling in the development of pathogenic epithelial changes contributing to airway obstruction in severe asthma.
Katrina M. Kudrna, Luis F. Vilches, Evan M. Eilers, Shailendra K. Maurya, Steven L. Brody, Amjad Horani, Kristina L. Bailey, Todd A. Wyatt, John D. Dickinson
Vascular smooth muscle cells (VSMCs) exhibit significant heterogeneity and plasticity, enabling them to switch between contractile and synthetic states, which is crucial for vascular remodeling. NEXN has been identified as a high confidence gene associated with dilated cardiomyopathy (DCM). Existing evidence indicate NEXN is involved in phenotypic switching of VSMCs. However, a comprehensive understanding of the cell-specific roles and precise mechanisms of NEXN in vascular remodeling remains elusive. Using integrative transcriptomics analysis and smooth muscle specific lineage tracing mice, we demonstrate NEXN is highly expressed in VSMCs, and the expression of NEXN is significantly reduced during the phenotypic transformation of VSMCs and intimal hyperplasia induced by vascular injury. VSMC-specific NEXN deficiency promoted the phenotypic transition of VSMCs and exacerbated neointimal hyperplasia in mice following vascular injury. Mechanistically, we found NEXN primarily mediated VSMCs proliferation and phenotypic transition through endoplasmic reticulum (ER) stress and KLF4 signaling. Inhibiting ER stress ameliorated VSMCs phenotypic transition by reducing cell cycle activity and proliferation caused by NEXN deficiency. These findings indicate targeting NEXN could be explored as a promising therapeutic approach for proliferative arterial diseases.
Zexuan Lin, Chaojie Wang, Zhuohua Wen, Zhaohui Cai, Wenjie Guo, Xin Feng, Zengyan Huang, Rongjun Zou, Xiaoping Fan, Canzhao Liu, Hanyan Yang
Human Caspase Recruitment Domain Containing Protein 9 (CARD9) deficiency predisposes to invasive fungal disease, particularly by Candida spp. Distinctly, CARD9-deficiency causes chronic central nervous system (CNS) candidiasis. Currently, no animal model recapitulates the chronicity of disease, precluding a better understanding of immunopathogenesis. We established a knock-in mouse homozygous for the recurring p.Y91H mutation (Y91HKI) and, in parallel to Card9-/- mice, titrated the intravenous fungal inoculum to the CARD9-genotype to develop a model of chronic invasive candidiasis. Strikingly, CARD9-deficient mice had predominantly CNS involvement, with neurological symptoms appearing late during infection and progressive brain fungal burden in the absence of fulminant sepsis, reflecting the human syndrome. Mononuclear cell aggregation at fungal lesions in the brain correlated with increased MHCII+Ly6C+ monocyte numbers at day 1 post-infection in WT and Y91HKI mice, but not in Card9-/- mice. At day 4 post-infection, neutrophils and additional Ly6C+ monocytes were recruited to the CARD9-deficient brain. As in humans, Y91HKI mutant mice demonstrated cerebral multinucleated giant cells and granulomata. Subtle immunologic differences between the hypomorphic (p.Y91H) and null mice were noted, perhaps explaining some of the variability seen in humans. Our work established a disease-recapitulating animal model to specifically decipher chronic CNS candidiasis due to CARD9 deficiency.
Marija Landekic, Isabelle Angers, Yongbiao Li, Marie-Christine Guiot, Marc-André Déry, Annie Beauchamp, Lucie Roussel, Annie Boisvert, Wen Bo Zhou, Christina Gavino, Julia Luo, Stéphane Bernier, Makayla Kazimerczak-Brunet, Yichun Sun, Brendan Snarr, Michail S. Lionakis, Robert T. Wheeler, Irah L. King, Salman Qureshi, Maziar Divangahi, Donald C. Vinh
Resistance to chemotherapy of pancreatic ductal adenocarcinoma (PDAC) is largely driven by intratumoral heterogeneity (ITH) due to tumor cell plasticity and clonal diversity. In order to develop novel strategies to overcome this defined mechanism of resistance, tools to monitor and quantify ITH in a rapid and scalable fashion are needed urgently. Here, we employed label-free digital holographic microscopy (DHM) to characterize ITH in PDAC. We established a robust experimental and machine learning analysis pipeline to perform single cell phenotyping based on DHM-derived phase images of PDAC cells in suspension. Importantly, we are able to detect dynamic changes in tumor cell differentiation and heterogeneity of distinct PDAC subtypes upon induction of epithelial-to-mesenchymal transition and under treatment-imposed pressure in murine and patient-derived model systems. This platform allows us to assess phenotypic ITH in PDAC on a single cell level in real-time. Implementing this technology into the clinical workflow has the potential to fundamentally increase our understanding of tumor heterogeneity during evolution and treatment response.
Katja Wittenzellner, Manuel Lengl, Stefan Röhrl, Carlo Maurer, Christian Klenk, Aristeidis Papargyriou, Laura Schmidleitner, Nicole Kabella, Akul Shastri, David E. Fresacher, Farid Harb, Nawal Hafez, Stefanie Bärthel, Daniele Lucarelli, Carmen Escorial-Iriarte, Felix Orben, Rupert Öllinger, Ellen Emken, Lisa Fricke, Joanna Madej, Patrick Wustrow, I. Ekin Demir, Helmut Friess, Tobias Lahmer, Roland M. Schmid, Roland Rad, Günter Schneider, Bernhard Kuster, Dieter Saur, Oliver Hayden, Klaus Diepold, Maximilian Reichert
Single dose radiotherapy (SDRT) is a highly-curative modality that may transform radiotherapy practice. Unfortunately, only ~50% of oligometastatic lesions are SDRT treatable due to adjacent radiosensitive normal organs at risk. Here we address extent to which an anti-angiogenic drug, VEGFR2-antagonist DC101, radiosensitizes SDRT using murine MCA/129 fibrosarcomas and Lewis Lung Carcinomas, which display a dose range for SDRT lesional eradication virtually identical to that employed clinically (10-30Gy). SDRT induces unique tumor cure, stimulating rapid endothelial acid sphingomyelinase (ASMase)/ceramide signaling that yields marked vasoconstriction and perfusion defects in tumor xenografts and human oligometastases. Ensuing tumor parenchymal oxidative damage initiates a SUMO Stress Response (SSR), which inactivates multiple homologous recombination repair enzymes, radiosensitizing all tumor types. While VEGF inhibits neo-angiogenic ASMase, optimal radiosensitization occurs only upon anti-angiogenic drug delivery at ~1h preceding SDRT. Obeying these principles, we find DC101 radiosensitizes SSR, DNA double strand break unrepair and tumor cure by 4-8Gy at all clinically-relevant doses. Critically, DC101 fails to sensitize small intestinal endothelial injury or lethality from the gastrointestinal-acute radiation syndrome.
Jin Cheng, Liyang Zhao, Sahra Bodo, Prashanth K. B. Nagesh, Rajvir Singh, Adam O. Michel, Regina Feldman, Zhigang Zhang, Simon N. Powell, Zvi Fuks, Richard Kolesnick