Abstract
Freshwater sponges play a major role in freshwater ecological system as important filter-feeding organisms and bioindicators. There are only few data about their ecological diversity and population genetic structure available, though a deeper knowledge is needed to propose proper conservation and effective management. The aim of this study was to assess data on distribution patterns of freshwater sponges to study the connectivity of genotypes of Ephydatia fluviatilis in a river system. We sampled specimens from River-Sieg system (River Agger and River Sieg, Germany). We hypothesized that strong anthropogenic influence would cause a uniform distribution of population structures. The genetic structure of E. fluviatilis populations was analysed with a set of eleven microsatellite loci from seven locations in River-Sieg system. Besides of E. fluviatilis, three other species co-occurred (Ephydatia mülleri, Spongilla lacustris, Eunapius fragilis). In contrast to our hypothesis, we observed an overall correlation between genetic and geographic distances among populations of this sessile species, which follows a clear isolation-by-distance pattern. A significant microsatellite polymorphism and high levels of genetic divergence between populations (FST) in upstream reaches were present. These results will provide important information for conservation management of populations with limited dispersal ability in connected river systems.



Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Anderson CM, Aparicio GJ, Atangana AR, Beaulieu J, Bruford MW, Cain F (2010) Permanent genetic resources added to molecular ecology resources Database 1 December 2009–31 January 2010. Mol Ecol Resour 10:576–579. https://doi.org/10.1111/j.1755-0998.2010.02851.x
Blanchet S, Rey O, Etienne R, Lek S, Loot G (2010) Species-specific responses to landscape fragmentation: implications for management strategies. Evol Appl 3:291–304. https://doi.org/10.1111/j.1752-4571.2009.00110.x
Blanquer A, Uriz MJ, Caujapé-Castells J (2009) Small-scale spatial genetic structure in Scopalina lophyropoda, an encrusting sponge with philopatric larval dispersal and frequent fission and fusion events. Mar Ecol Prog Ser 380:95–102. https://doi.org/10.3354/meps07931
Calderon I, Ortega N, Duran S, Becerro M, Pascual M, Turon X (2007) Finding the relevant scale: clonality and genetic structure in a marine invertebrate (Crambe crambe, Porifera). Mol Ecol 16:1799–1810. https://doi.org/10.1111/j.1365-294X.2007.03276.x
Caujapé-Castells J, Baccarani-Rosas M (2005) Transformer-3: a program for the analysis of molecular population genetic data. EXEGEN Software, Jardín Botánico Canario ‘Viera y Clavijo’, Las Palmas de Gran Canaria. http://www.exegen.org. Accessed 2 May 2017
Corallini C, Gaino E (2003) The caddisfly Ceraclea fulva and the freshwater sponge Ephydatia fluviatilis: a successful relationship. Tissue Cell 35:1–7. https://doi.org/10.1016/S0040-8166(02)00086-1
Costantini F, Fauvelot C, Abbiati M (2007) Fine-scale genetic structuring in Corallium rubrum: evidence of inbreeding and limited effective larval dispersal. Mar Ecol Prog Ser 340:109–119
Crookes S, Shaw PW (2016) Isolation by distance and non-identical patterns of gene flow within two river populations of the freshwater fish Rutilus rutilus (L. 1758). Conserv Genet 17:861–874. https://doi.org/10.1007/s10592-016-0828-3
Diniz-filho JAF, Soares TN, Lima JS, Dobrovolski R, Landeiro VL, Telles MPC, Rangel TF, Boni LM (2013) Mantel test in population genetics. Genet Mol Biol 36:475–485. https://doi.org/10.1590/S1415-47572013000400002
Dröscher I, Waringer J (2007) Abundance and microhabitats of freshwater sponges (Spongillidae) in a Danubean floodplain in Austria. Freshw Biol 52:998–1008. https://doi.org/10.1111/j.1365-2427.2007.01747.x
Duran S, Giribet G, Turon X (2004a) Phylogeographical history of the sponge Crambe crambe (Porifera, Poecilosclerida): range expansion and recent invasion of the Macaronesian islands from the Mediterranean Sea. Mol Ecol 13:109–122. https://doi.org/10.1007/s00227-003-1178-5
Duran S, Pascual M, Turon X (2004b) Low levels of genetic variation in mtDNA sequences over the western Mediterranean and Atlantic range of the sponge Crambe crambe (Poecilosclerida). Mar Biol 144:31–35. https://doi.org/10.1046/j.1365-294X.2003.02022.x
Eggers TO (2001) Verbreitung der Süßwasserschwämme (Porifera: Spongillidae) im Stichkanal Salzgitter (Mittellandkanal) bei Braunschweig. Braunschweiger Naturkundliche Schriften 6:433–446
Excoffier L, Laval G, Schneider S (2007) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform 1:47–50
Fagan WF (2002) Connectivity, fragmentation and extinction risk in dendritic metapopulations. Ecology 83:3242–3249
Fischer S, Kummer H (2000) Effects of residual flow and habitat fragmentation on distribution and movement of bullhead (Cottus gobio L.) in an alpine stream. Hydrobiologia 422:305–317. https://doi.org/10.1023/A:1017083714513
Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primer for amplification of mitohondrial cytochrome c. Mol Mar Biotechnol 3:294–299
Gaino E, Rebora M, Corallini C, Lancioni T (2003) The life-cycle of the sponge Ephydatia fluviatilis (L.) living on the reed Phragmites australis in an artificially regulated lake. Hydrobiologia 495:127–142. https://doi.org/10.1023/A:1025454506643
Gugel J (2001) Life cycles and ecological interactions of freshwater sponges (Porifera, Spongillidae) in the River Rhine in Germany. Limnologica 31:185–198. https://doi.org/10.1016/S0075-9511(01)80020-7
Harrison F (1974) Sponges (Porifera: Spongillidae). In: Hart CW Jr, Fuller SLH (eds) Pollution ecology of freshwater invertebrates. Academic Press, New York
Heck KL, Westone GS (1977) Habitat complexity and invertebrate species richness and abundance in tropical seagrass meadows. J Biogeogr 4:135–142. https://doi.org/10.2307/3038158
Jehle R, Wilson G, Arntzen J, Burke T (2005) Contemporary gene flow and the spatio-temporal genetic structure of subdivided newt populations (Triturus cristatus, T. marmoratus). J Evol Biol 18:619–628. https://doi.org/10.1111/j.1420-9101.2004.00864.x
Launey S, Hedgecock D (2001) High genetic load in the Pacific oyster Crassostrea gigas. Genetics 159:255–265
Lucentini L, Gigliarelli L, Puletti ME, Palomba A, Caldelli A, Fontaneto D, Panara F (2013) Spatially explicit genetic structure in the freshwater sponge Ephydatia fluviatilis (Linnaeus, 1759) within the framework of the monopolisation hypothesis. J Limnol 72:172–181. https://doi.org/10.4081/jlimnol.2013.e14
Luikart G, Sherwin W, Steele B, Allendorf F (1998) Usefulness of molecular markers for detecting population bottlenecks via monitoring genetic change. Mol Ecol 7:963–974. https://doi.org/10.1046/j.1365-294x.1998.00414.x
Maldonado M, Uriz MJ (1999) Sexual propagation by sponge fragments. Nature 398:476–476. https://doi.org/10.1038/19007
Manconi R, Pronzato R (2007) Gemmules as a key structure for the adaptive radiation of freshwater sponges: a morphofunctional and biogeographical study. In: Custódio MR, Lôbo-Hajdu G, Hajdu E, Muricy G (eds) Porifera research: biodiversity, innovation and sustainability. Série Livros 28. Museu Nacional, Rio de Janeiro, pp 61–77
Meglecz E, Petenian F, Danchin E, Coeur D’acier A, Rasplus JY, Faure E (2004) High similarity between flanking regions of different microsatellites detected within each of two species of Lepidoptera: Parnassius apollo and Euphydryas aurinia. Mol Ecol 13:1693–1700. https://doi.org/10.1111/j.1365-294X.2004.02163.x
Meixner MJ, Lüter C, Eckert C, Itskovich V, Janussen D, von Rintelen T, Bohne AV, Meixner JM, Hess WR (2007) Phylogenetic analysis of freshwater sponges provide evidence for endemism and radiation in ancient lakes. Mol Phylogenet Evol 45:875–886. https://doi.org/10.1016/j.ympev.2007.09.007
Michalakis Y, Excoffier L (1996) A generic estimation of population subdivision using distances between alleles with special reference for microsatellite loci. Genetics 142:1061–1064
Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590
Nicacio G, Pinheiro U (2015) Biodiversity of freshwater sponges (Porifera: Spongillina) from northeast Brazil: new species and notes on systematics. Zootaxa 3981(2):220–240. https://doi.org/10.11646/zootaxa.3981.2.4
Økland KA, Økland J (1996) Freshwater sponges (Porifera: Spongillidae) of Norway: distribution and ecology. Hydrobiologia 330:1–30. https://doi.org/10.1007/BF00020819
Pannell JR, Charlesworth B (2000) Effects of metapopulation processes on measures of genetic diversity. Philos Trans R Soc Lond B 355:1851–1864. https://doi.org/10.1098/rstb.2000.0740
Penney JT, Racek AA (1968) Comprehensive revision of a worldwide collection of freshwater sponges (Porifera: Spongillidae). Bull US Natl Mus 272:1–184
Pérez-Portela R, Turon X (2008) Cryptic divergence and strong population structure in the colonial invertebrate Pycnoclavella communis (Ascidiacea) inferred from molecular data. Zoology 111:163–178. https://doi.org/10.1016/j.zool.2007.06.006
Pérez-Portela R, Noyer C, Becerro MA (2015) Genetic structure and diversity of the endangered bath sponge Spongia lamella. Aquat Conserv 25:365–379. https://doi.org/10.1002/aqc.2423
Pile AJ, Patterson MR, Savarese M, Chernykh VI, Fialkov VA (1997) Trophic effects of sponge feeding within Lake Baikal’s littoral zone. 2: sponge abundance, diet, feeding efficiency, and carbon flux. Limnol Oceanogr 42:178–184. https://doi.org/10.4319/lo.1997.42.1.0178
Piry S, Luikart G, Cornuet J (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size suing allele frequency data. J Hered 90:502–503
Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959
Pronzato R, Manconi R (2001) Atlas of European freshwater sponges. Ann Mus civ St nat Ferrara 4:3–64
Raymond M, Rousset F (1995) An exact test for population differentiation. Evolution 49:1280–1283. https://doi.org/10.2307/2410454
Sanderson WG (1996) Rarity of marine benthic species in Great Britain: development and application of assessment criteria. Aquat Conserv 6:245–256
Schletterer M, Eggers TO (2006) Evidence of freshwater sponges (Porifera: Spongillidae) in the Upper Volga River (Russia). Berichte des Naturwissenschaftlich-Medizinischen Vereins Innsbruck 93:73–84
Selkoe KA, Toonen RJ (2006) Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol Lett 9:615–629. https://doi.org/10.1111/j.1461-0248.2006.00889.x
Shearer T, Van Oppen M, Romano S, Wörheide G (2002) Slow mitochondrial DNA sequence evolution in the Anthozoa (Cnidaria). Mol Ecol 11:2475–2487. https://doi.org/10.1046/j.1365-294X.2002.01652.x
Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139:457–462
Solé-Cava AM, Boury-Esnault N (1999) Patterns of intra- and interspecific genetic divergence in marine sponges. Mem Qld Mus 44:591–602
Tiwari B (2014) Seed science and technology. Oxford Book Company.
Van Oosterhout C, Hutchinson WF, Wills DP, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538. https://doi.org/10.1111/j.1471-8286.2004.00684.x
Vohmann A, Mutz M, Arndt H, Weitere M (2009) Grazing impact and phenology of the freshwater sponge Ephydatia muelleri and the bryozoans Plumatella emarginata and Fredericella sultana under experimental warming. Freshw Biol 54:1078–1092. https://doi.org/10.1111/j.1365-2427.2008.02155.x
Vos LD (1991) Atlas of sponge morphology. Smithsonian Institution Press, New York
Wattier R, Engel C, Saumitou-Laprade P, Valero M (1998) Short allele dominance as a source of heterozygote deficiency at microsatellite loci: experimental evidence at the dinucleotide locus Gv1CT in Gracilaria gracilis (Rhodophyta). Mol Ecol 7:1569–1573. https://doi.org/10.1046/j.1365-294x.1998.00477.x
Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370. https://doi.org/10.1111/j.1558-5646.1984.tb05657.x
Weissenfels N (1989) Biologie und Mikroskopische Anatomie der Süßwasserschwämme (Spongillidae). Fischer, New York
Wörheide G, Hooper JN, Degnan BM (2002) Phylogeography of western Pacific Leucetta ‘chagosensis’ (Porifera: Calcarea) from ribosomal DNA sequences: implications for population history and conservation of the Great Barrier Reef World Heritage Area (Australia). Mol Ecol 11:1753–1768. https://doi.org/10.1046/j.1365-294X.2002.01570.x
Wulff J (1995) Effects of a hurricane on survival and orientation of large erect coral reef sponges. Coral Reefs 14:55–61. https://doi.org/10.1007/BF00304073
Acknowledgements
We are grateful to Gabi Mikoleit (Aggerverband) and Dennis Prausse (University of Cologne) for helping in field sampling. Many thanks to Thomas Wiehe, Paul Christiaan Venter and Anke Schwarzenberger (University of Cologne) for discussions on data analyses. Helpful laboratory assistance to identify different sponge species was provided by Rosita Bieg. The study was financially supported by the CSC (China Scholarship Council Nr. 201408080026) and by the University of Cologne for laboratory expenses.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Li, R., Nitsche, F. & Arndt, H. Mesoscale investigations based on microsatellite analysis of the freshwater sponge Ephydatia fluviatilis in the River-Sieg system (Germany) reveal a genetic divergence. Conserv Genet 19, 959–968 (2018). https://doi.org/10.1007/s10592-018-1069-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10592-018-1069-4