Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Translating RNA sequencing into clinical diagnostics: opportunities and challenges

Key Points

  • RNA-based measurements have the potential for application across diverse areas of human health, including disease diagnosis, prognosis and therapeutic selection. Current clinical applications include infectious diseases, cancer, transplant medicine and fetal monitoring.

  • RNA sequencing (RNA-seq) allows for the detection of a wide variety of RNA species, including mRNA, non-coding RNA, pathogen RNA, chimeric gene fusions, transcript isoforms and splice variants, and provides the capability to quantify known, pre-defined RNA species and rare RNA transcript variants within a sample. In addition to differential expression and detection of novel transcripts, RNA-seq also supports the detection of mutations and germline variation for hundreds to thousands of expressed genetic variants, facilitating assessment of allele-specific expression of these variants.

  • Circulating RNAs and small regulatory RNAs, such as microRNAs, are very stable. These RNA species are vigorously being tested for their potential as biomarkers. However, there are currently few agreed upon methods for isolation or quantitative measurements and a current lack of quality controls that can be used to test platform accuracy and sample preparation quality.

  • Analytical, bioinformatic and regulatory challenges exist, and ongoing efforts toward the establishment of benchmark standards, assay optimization for clinical conditions and demonstration of assay reproducibility are required to expand the clinical utility of RNA-seq.

Abstract

With the emergence of RNA sequencing (RNA-seq) technologies, RNA-based biomolecules hold expanded promise for their diagnostic, prognostic and therapeutic applicability in various diseases, including cancers and infectious diseases. Detection of gene fusions and differential expression of known disease-causing transcripts by RNA-seq represent some of the most immediate opportunities. However, it is the diversity of RNA species detected through RNA-seq that holds new promise for the multi-faceted clinical applicability of RNA-based measures, including the potential of extracellular RNAs as non-invasive diagnostic indicators of disease. Ongoing efforts towards the establishment of benchmark standards, assay optimization for clinical conditions and demonstration of assay reproducibility are required to expand the clinical utility of RNA-seq.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diversity of RNA species detection enabled by RNA sequencing applications.
Figure 2: Criteria for clinical test development and adoption.

Similar content being viewed by others

References

  1. Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621–628 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Doebele, R. C. et al. An oncogenic NTRK fusion in a soft tissue sarcoma patient with response to the tropomyosin-related kinase (TRK) inhibitor LOXO-101. Cancer Discov. 5, 1049–1057 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sonu, R. J., Jonas, B. A., Dwyre, D. M., Gregg, J. P. & Rashidi, H. H. Optimal molecular methods in detecting p190 (BCR-ABL) fusion variants in hematologic malignancies: a case report and review of the literature. Case Rep. Hematol. 2015, 458052 (2015).

    PubMed  PubMed Central  Google Scholar 

  4. Cech, T. R. & Steitz, J. A. The noncoding RNA revolution-trashing old rules to forge new ones. Cell 157, 77–94 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Wang, Z., Gerstein, M. & Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10, 57–63 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wilhelm, B. T. et al. Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature 453, 1239–1243 (2008). This is one of the earliest applications of RNA-seq indicating diagnostic potential for detecting and quantifying various RNA species including mRNA, alternative transcripts and non-coding RNA.

    Article  CAS  PubMed  Google Scholar 

  7. Velculescu, V. E., Zhang, L., Vogelstein, B. & Kinzler, K. W. Serial analysis of gene expression. Science 270, 484–487 (1995). This paper provides an early description of multiplexed RNA detection that helped set the stage for use of microarray and spotted arrays within diagnostics.

    Article  CAS  PubMed  Google Scholar 

  8. Marioni, J. C., Mason, C. E., Mane, S. M., Stephens, M. & Gilad, Y. RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res. 18, 1509–1517 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sultan, M. et al. A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science 321, 956–960 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Senkus, E. et al. Primary breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 26, v8–v30 (2015).

    Article  PubMed  Google Scholar 

  11. Coates, A. S. et al. Tailoring therapies-improving the management of early breast cancer: St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2015. Ann. Oncol. 26, 1533–1546 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sparano, J. A. et al. Prospective validation of a 21-gene expression assay in breast cancer. N. Engl. J. Med. 373, 2005–2014 (2015). This paper helps establish clinical validity for a prognostic signature for endocrine therapy alone for patients with hormone-receptor-positive, ERBB2-negative, axillary node-negative breast cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fumagalli, D. et al. Transfer of clinically relevant gene expression signatures in breast cancer: from Affymetrix microarray to Illumina RNA-Sequencing technology. BMC Genomics 15, 1008 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Zhang, W. et al. Comparison of RNA-seq and microarray-based models for clinical endpoint prediction. Genome Biol. 16, 133 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Deng, M. C. et al. Noninvasive discrimination of rejection in cardiac allograft recipients using gene expression profiling. Am. J. Transplant. 6, 150–160 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Starling, R. C. et al. Molecular testing in the management of cardiac transplant recipients: initial clinical experience. J. Heart Lung Transplant. 25, 1389–1395 (2006).

    Article  PubMed  Google Scholar 

  17. Van Allen, E. M. et al. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 350, 207–211 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vardiman, J. W. et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 114, 937–951 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Font-Tello, A. et al. Association of ERG and TMPRSS2-ERG with grade, stage, and prognosis of prostate cancer is dependent on their expression levels. Prostate 75, 1216–1226 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Druker, B. J. et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med. 344, 1031–1037 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. O'Brien, S. et al. Chronic Myelogenous Leukemia, version 1.2014. J. Natl Compr. Canc. Netw. 11, 1327–1340 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cavelier, L. et al. Clonal distribution of BCR-ABL1 mutations and splice isoforms by single-molecule long-read RNA sequencing. BMC Cancer 15, 45 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Leighl, N. B. et al. Molecular testing for selection of patients with lung cancer for epidermal growth factor receptor and anaplastic lymphoma kinase tyrosine kinase inhibitors: American Society of Clinical Oncology endorsement of the College of American Pathologists/International Association for the study of lung cancer/association for molecular pathology guideline. J. Clin. Oncol. 32, 3673–3679 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wynes, M. W. et al. An international interpretation study using the ALK IHC antibody D5F3 and a sensitive detection kit demonstrates high concordance between ALK IHC and ALK FISH and between evaluators. J. Thorac. Oncol. 9, 631–638 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lindeman, N. I. et al. Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. Arch. Pathol. Lab. Med. 137, 828–860 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang, Y., Wu, N., Liu, J., Wu, Z. & Dong, D. FusionCancer: a database of cancer fusion genes derived from RNA-seq data. Diagn. Pathol. 10, 131 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Magri, F. et al. Clinical and molecular characterization of a cohort of patients with novel nucleotide alterations of the Dystrophin gene detected by direct sequencing. BMC Med. Genet. 12, 37 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu, F. & Gong, C. X. Tau exon 10 alternative splicing and tauopathies. Mol. Neurodegener. 3, 8 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. La Cognata, V., D'Agata, V., Cavalcanti, F. & Cavallaro, S. Splicing: is there an alternative contribution to Parkinson's disease? Neurogenetics 16, 245–263 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen, J. & Weiss, W. A. Alternative splicing in cancer: implications for biology and therapy. Oncogene 34, 1–14 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Dehm, S. M., Schmidt, L. J., Heemers, H. V., Vessella, R. L. & Tindall, D. J. Splicing of a novel androgen receptor exon generates a constitutively active androgen receptor that mediates prostate cancer therapy resistance. Cancer Res. 68, 5469–5477 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Antonarakis, E. S. et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N. Engl. J. Med. 371, 1028–1038 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Sugawa, N., Ekstrand, A. J., James, C. D. & Collins, V. P. Identical splicing of aberrant epidermal growth factor receptor transcripts from amplified rearranged genes in human glioblastomas. Proc. Natl Acad. Sci. USA 87, 8602–8606 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Reardon, D. A. et al. 107 ReACT: overall survival from a randomized Phase II study of rindopepimut (CDX-110) plus Bevacizumab in relapsed glioblastoma. Neurosurgery 62 (Suppl. 1), 198–199 (2015).

    Article  Google Scholar 

  35. Gambino, G., Tancredi, M., Falaschi, E., Aretini, P. & Caligo, M. A. Characterization of three alternative transcripts of the BRCA1 gene in patients with breast cancer and a family history of breast and/or ovarian cancer who tested negative for pathogenic mutations. Int. J. Mol. Med. 35, 950–956 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Massah, S., Beischlag, T. V. & Prefontaine, G. G. Epigenetic events regulating monoallelic gene expression. Crit. Rev. Biochem. Mol. Biol. 50, 337–358 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Valle, L. et al. Germline allele-specific expression of TGFBR1 confers an increased risk of colorectal cancer. Science 321, 1361–1365 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. de la Chapelle, A. Genetic predisposition to human disease: allele-specific expression and low-penetrance regulatory loci. Oncogene 28, 3345–3348 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lossie, A. C. et al. Distinct phenotypes distinguish the molecular classes of Angelman syndrome. J. Med. Genet. 38, 834–845 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li, G. et al. Identification of allele-specific alternative mRNA processing via transcriptome sequencing. Nucleic Acids Res. 40, e104 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Klimpe, S. et al. Evaluating the effect of spastin splice mutations by quantitative allele-specific expression assay. Eur. J. Neurol. 18, 99–105 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Wood, D. L. A. et al. Recommendations for accurate resolution of gene and isoform allele-specific expression in RNA-seq data. PLoS ONE 10, e0126911–e0126927 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Rivas, M. A. et al. Human genomics. Effect of predicted protein-truncating genetic variants on the human transcriptome. Science 348, 666–669 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Larson, N. B. et al. Comprehensively evaluating cis-regulatory variation in the human prostate transcriptome by using gene-level allele-specific expression. Am. J. Hum. Genet. 96, 869–882 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pickrell, J. K. et al. Understanding mechanisms underlying human gene expression variation with RNA sequencing. Nature 464, 768–772 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Szelinger, S. et al. Characterization of X chromosome inactivation using integrated analysis of whole-exome and mRNA sequencing. PLoS ONE 9, e113036 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Degner, J. F. et al. Effect of read-mapping biases on detecting allele-specific expression from RNA-sequencing data. Bioinformatics 25, 3207–3212 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Castel, S. E., Levy-Moonshine, A., Mohammadi, P., Banks, E. & Lappalainen, T. Tools and best practices for data processing in allelic expression analysis. Genome Biol. 16, 195 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Valadi, H. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9, 654–659 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Arroyo, J. D. et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc. Natl Acad. Sci. USA 108, 5003–5008 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Michael, A. et al. Exosomes from human saliva as a source of microRNA biomarkers. Oral Dis. 16, 34–38 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Skog, J. et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat. Cell Biol. 10, 1470–1476 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Koh, W. et al. Noninvasive in vivo monitoring of tissue-specific global gene expression in humans. Proc. Natl Acad. Sci. USA 111, 7361–7366 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Goetzl, E. J. et al. Altered lysosomal proteins in neural-derived plasma exosomes in preclinical Alzheimer disease. Neurology 85, 40–47 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shi, M. et al. Plasma exosomal α-synuclein is likely CNS-derived and increased in Parkinson's disease. Acta Neuropathol. 128, 639–650 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Brock, G., Castellanos-Rizaldos, E., Hu, L., Coticchia, C. & Skog, J. Liquid biopsy for cancer screening, patient stratification and monitoring. Translat. Cancer Res. 4, 280–290 (2015).

    CAS  Google Scholar 

  57. Tsui, N. B. et al. Maternal plasma RNA sequencing for genome-wide transcriptomic profiling and identification of pregnancy-associated transcripts. Clin. Chem. 60, 954–962 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Ainsztein, A. M. et al. The NIH Extracellular RNA Communication Consortium. J. Extracell. Vesicles 4, 27493 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Quinn, J. F. et al. Extracellular RNAs: development as biomarkers of human disease. J. Extracell. Vesicles 4, 27495 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. Laurent, L. C. et al. Meeting report: discussions and preliminary findings on extracellular RNA measurement methods from laboratories in the NIH Extracellular RNA Communication Consortium. J. Extracell. Vesicles 4, 26533 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. Mestdagh, P. et al. Evaluation of quantitative miRNA expression platforms in the microRNA quality control (miRQC) study. Nat. Methods 11, 809–815 (2014). This paper provides a critical assessment of current platform performance in measuring miRNA expression.

    Article  CAS  PubMed  Google Scholar 

  62. Kelly, H. et al. Cross Platform standardisation of an experimental pipeline for use in the identification of dysregulated human circulating miRNAs. PLoS ONE 10, e0137389 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Kozomara, A. & Griffiths-Jones, S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 42, D68–73 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. Chan, P. P. & Lowe, T. M. GtRNAdb: a database of transfer RNA genes detected in genomic sequence. Nucleic Acids Res. 37, D93–D97 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Salzman, J., Gawad, C., Wang, P. L., Lacayo, N. & Brown, P. O. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS ONE 7, e30733 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Memczak, S., Papavasileiou, P., Peters, O. & Rajewsky, N. Identification and characterization of circular RNAs as a new class of putative biomarkers in human blood. PLoS ONE 10, e0141214 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Goodarzi, H. et al. Endogenous tRNA-derived fragments suppress breast cancer progression via YBX1 displacement. Cell 161, 790–802 (2015). Researchers identified a novel regulatory role for fragments of tRNA; further research may find that other RNA fragments can have novel functions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sutter, D. E. et al. Performance of five FDA-approved rapid antigen tests in the detection of 2009 H1N1 influenza A virus. J. Med. Virol. 84, 1699–1702 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Santiago, G. A. et al. Analytical and clinical performance of the CDC real time RT-PCR assay for detection and typing of dengue virus. PLoS Negl. Trop. Dis. 7, e2311 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Styer, L. M., Miller, T. T. & Parker, M. M. Validation and clinical use of a sensitive HIV-2 viral load assay that uses a whole virus internal control. J. Clin. Virol. 58 (Suppl. 1), e127–e133 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Pinsky, B. A. et al. Analytical performance characteristics of the Cepheid GeneXpert Ebola Assay for the detection of Ebola virus. PLoS ONE 10, e0142216 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Fischer, N. et al. Evaluation of unbiased next-generation sequencing of RNA (RNA-seq) as a diagnostic method in influenza virus-positive respiratory samples. J. Clin. Microbiol. 53, 2238–2250 (2015). This study describes the use of an unbiased RNA-seq application for positive detection and characterization of influenza in respiratory samples, paving the way for this tool as a diagnostic methodology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gire, S. K. et al. Genomic surveillance elucidates Ebola virus origin and transmission during the 2014 outbreak. Science 345, 1369–1372 (2014). This paper describes the use of RNA-seq for viral detection and measurement for epidemic emergence and tracking.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gregori, J. et al. Ultra-deep pyrosequencing (UDPS) data treatment to study amplicon HCV minor variants. PLoS ONE 8, e83361 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Ekici, H. et al. Cost-efficient HIV-1 drug resistance surveillance using multiplexed high-throughput amplicon sequencing: implications for use in low- and middle-income countries. J. Antimicrob. Chemother. 69, 3349–3355 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. Wang, K. et al. The complex exogenous RNA spectra in human plasma: an interface with human gut biota? PLoS ONE 7, e51009 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Beatty, M. et al. Small RNAs from plants, bacteria and fungi within the order Hypocreales are ubiquitous in human plasma. BMC Genomics 15, 933 (2014). The authors aptly analyse the small RNA component of human plasma that relates to the microbiome. Although small in sample size, this study helps to pave the way to more robust circulating small RNA studies combining both host and microbial RNA-omes.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Ghosal, A. et al. The extracellular RNA complement of Escherichia coli. Microbiologyopen http://dx.doi.org/10.1002/mbo3.235 (2015).

  79. Chen, S. J. et al. Characterization of Epstein–Barr virus miRNAome in nasopharyngeal carcinoma by deep sequencing. PLoS ONE 5, e12745 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Meshesha, M. K. et al. The microRNA transcriptome of human cytomegalovirus (HCMV). Open Virol. J. 6, 38–48 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Cucher, M. et al. High-throughput characterization of Echinococcus spp. metacestode miRNomes. Int. J. Parasitol. 45, 253–267 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. Fagnocchi, L. et al. Global transcriptome analysis reveals small RNAs affecting Neisseria meningitidis bacteremia. PLoS ONE 10, e0126325 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Latorre, I. et al. A novel whole-blood miRNA signature for a rapid diagnosis of pulmonary tuberculosis. Eur. Respir. J. 45, 1173–1176 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Ren, N. et al. MicroRNA signatures from multidrugresistant Mycobacterium tuberculosis. Mol. Med. Rep. 12, 6561–6567 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lie, A. K. & Kristensen, G. Human papillomavirus E6/E7 mRNA testing as a predictive marker for cervical carcinoma. Expert Rev. Mol. Diagn. 8, 405–415 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Kanwal, F., Kramer, J. R., Ilyas, J., Duan, Z. & El-Serag, H. B. HCV genotype 3 is associated with an increased risk of cirrhosis and hepatocellular cancer in a national sample of U. S. Veterans with HCV. Hepatol. 60, 98–105 (2014).

    Article  CAS  Google Scholar 

  87. Mitchell, A. M. et al. Transmitted/founder hepatitis C viruses induce cell-type- and genotype-specific differences in innate signaling within the liver. MBio 6, e02510 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Wu, L. S. et al. Systematic expression profiling analysis identifies specific microRNA-gene interactions that may differentiate between active and latent tuberculosis infection. Biomed. Res. Int. 2014, 895179 (2014).

    PubMed  PubMed Central  Google Scholar 

  89. Barry, S. E. et al. Identification of miR-93 as a suitable miR for normalizing miRNA in plasma of tuberculosis patients. J. Cell. Mol. Med. 19, 1606–1613 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Haddow, J. E. & Palomaki, G. E. in Human genome epidemiology: a scientific foundation for using genetic information to improve health and prevent disease. (eds Khoury, M. J., Little, J. & Burke, W.) 217–233 (Oxford Univ. Press, 2004).

    Google Scholar 

  91. ' t Hoen, P. A. et al. Reproducibility of high-throughput mRNA and small RNA sequencing across laboratories. Nat. Biotechnol. 31, 1015–1022 (2013).

    Article  CAS  Google Scholar 

  92. Zhao, W. et al. Comparison of RNA-Seq by poly (A) capture, ribosomal RNA depletion, and DNA microarray for expression profiling. BMC Genomics 15, 419 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Mercer, T. R. et al. Targeted sequencing for gene discovery and quantification using RNA CaptureSeq. Nat. Protoc. 9, 989–1009 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. Cabanski, C. R. et al. cDNA hybrid capture improves transcriptome analysis on low-input and archived samples. J. Mol. Diagn. 16, 440–451 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Cieslik, M. et al. The use of exome capture RNA-seq for highly degraded RNA with application to clinical cancer sequencing. Genome Res. 25, 1372–1381 (2015). This paper describes the application of exome- capture transcriptome sequencing to FFPE samples in the clinical setting.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhang, Z. H. et al. A Comparative study of techniques for differential expression analysis on RNA-seq data. PLoS ONE 9, e103207–e103211 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Munro, S. A. et al. Assessing technical performance in differential gene expression experiments with external spike-in RNA control ratio mixtures. Nat. Commun. 5, 5125 (2014).

    Article  CAS  PubMed  Google Scholar 

  98. Jiang, L. et al. Synthetic spike-in standards for RNA-seq experiments. Genome Res. 21, 1543–1551 (2011). This article discusses the development of widely adopted synthetic RNA spike-ins providing sensitivity, accuracy and biases in RNA-seq experiments; this work also provides an early characterization of the limits for discovery of rare transcripts in RNA-seq.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Tembe, W. D. et al. Open-access synthetic spike-in mRNA-seq data for cancer gene fusions. BMC Genomics 15, 1–9 (2014). Publicly available RNA-seq data using synthetic spike-ins of known cancer gene fusions.

    Article  CAS  Google Scholar 

  100. Su, Z. et al. A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control Consortium. Nat. Biotechnol. 32, 903–914 (2014). This study reports results from the SEQC project, evaluating RNA-seq performance assessments such as reproducibility and accuracy across sequencing platforms and collaborative sites.

    Article  CAS  Google Scholar 

  101. Li, S. et al. Multi-platform assessment of transcriptome profiling using RNA-seq in the ABRF next-generation sequencing study. Nat. Biotechnol. 32, 915–925 (2014). This study reports results from the ABRF-NGS study assessing the influence of experimental protocols & RNA conditions across sequencing platforms and collaborative sites.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Wang, C. et al. The concordance between RNA-seq and microarray data depends on chemical treatment and transcript abundance. Nat. Biotechnol. 32, 926–932 (2014). This study reports results from the SEQC project, evaluating the influence of chemical treatment on RNA-seq performance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Li, S. et al. Detecting and correcting systematic variation in large-scale RNA sequencing data. Nat. Biotechnol. 32, 888–895 (2014). References 100–103 describe large-scale efforts from the SEQC and ABRF consortia towards establishing standards for RNA-seq. This study evaluated systematic biases across platforms and laboratory sites, and assessed data analysis approaches for data normalization and bias correction.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Risso, D., Ngai, J., Speed, T. P. & Dudoit, S. Normalization of RNA-seq data using factor analysis of control genes or samples. Nat. Biotechnol. 32, 896–902 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Garber, M., Grabherr, M. G., Guttman, M. & Trapnell, C. Computational methods for transcriptome annotation and quantification using RNA-seq. Nat. Methods 8, 469–477 (2011).

    Article  CAS  PubMed  Google Scholar 

  106. Genomes Project, C. et al. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010).

    Article  CAS  Google Scholar 

  107. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Handsaker, R. E., Korn, J. M., Nemesh, J. & McCarroll, S. A. Discovery and genotyping of genome structural polymorphism by sequencing on a population scale. Nat. Genet. 43, 269–276 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Rehm, H. L. et al. ACMG clinical laboratory standards for next-generation sequencing. Genet. Med. 15, 733–747 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Wang, Y., Lu, J., Yu, J., Gibbs, R. A. & Yu, F. An integrative variant analysis pipeline for accurate genotype/haplotype inference in population NGS data. Genome Res. 23, 833–842 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zook, J. M. et al. Integrating human sequence data sets provides a resource of benchmark SNP and indel genotype calls. Nat. Biotechnol. 32, 246–251 (2014).

    Article  CAS  PubMed  Google Scholar 

  113. Di Tommaso, P. et al. The impact of Docker containers on the performance of genomic pipelines. PeerJ 3, e1273 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Kalari, K. R. et al. MAP-RSeq: Mayo Analysis Pipeline for RNA sequencing. BMC Bioinformatics 15, 224 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Nasser, S. et al. An integrated framework for reporting clinically relevant biomarkers from paired tumor/normal genomic and transcriptomic sequencing data in support of clinical trials in personalized medicine. Pac. Symp. Biocomput. 56–67 (2015).

  116. Alexander, E. K. et al. Preoperative diagnosis of benign thyroid nodules with indeterminate cytology. N. Engl. J. Med. 367, 705–715 (2012).

    Article  CAS  PubMed  Google Scholar 

  117. Alexander, E. K. et al. Multicenter clinical experience with the Afirma gene expression classifier. J. Clin. Endocrinol. Metab. 99, 119–125 (2014).

    Article  CAS  PubMed  Google Scholar 

  118. US Department of Health & Human Services. Center for Devices and Radiological Health. FDA notification and medical device reporting for laboratory developed tests (LDTs) — draft guidance. [online] (2014).

  119. US Department of Health & Human Services. Center for Devices and Radiological Health. Framework for regulatory oversight of laboratory developed tests (LDTs) — draft guidance. [online] (2014).

  120. US Department of Health & Human Services. Optimizing FDA' s regulatory oversight of next generation sequencing diagnostic tests — preliminary discussion paper. [online] (2014).

  121. Evans, B. J., Burke, W. & Jarvik, G. P. The FDA and genomic tests—getting regulation right. N. Engl. J. Med. 372, 2258–2264 (2015). This commentary discusses FDA oversight of genome-scale tests, including NGS, framing the discussion around the concepts of analytical and clinical validity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Tazawa, Y. Perspective for the development of companion diagnostics and regulatory landscape to encourage personalized medicine in Japan. Breast Cancer 23, 19–23 (2015).

    Article  PubMed  Google Scholar 

  123. Pignatti, F. et al. Cancer drug development and the evolving regulatory framework for companion diagnostics in the European union. Clin. Cancer Res. 20, 1458–1468 (2014).

    Article  CAS  PubMed  Google Scholar 

  124. Matthijs, G. et al. Guidelines for diagnostic next-generation sequencing. Eur. J. Hum. Genet. 24, 2–5 (2016).

    Article  CAS  PubMed  Google Scholar 

  125. European Commission. Proposal for a regulation of the European Parliament and of the council on in vitro diagnostic medical devices. [online] (2012).

  126. Rashid, N. U. et al. Differential and limited expression of mutant alleles in multiple myeloma. Blood 124, 3110–3117 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Andersson, A. K. et al. The landscape of somatic mutations in infant MLL-rearranged acute lymphoblastic leukemias. Nat. Genet. 47, 330–337 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Chandrasekharappa, S. C. et al. Massively parallel sequencing, aCGH, and RNA-Seq technologies provide a comprehensive molecular diagnosis of Fanconi anemia. Blood 121, e138–e148 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. De Vlaminck, I. et al. Circulating cell-free DNA enables noninvasive diagnosis of heart transplant rejection. Sci. Transl Med. 6, 241ra77 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. De Vlaminck, I. et al. Noninvasive monitoring of infection and rejection after lung transplantation. Proc. Natl Acad. Sci. USA 112, 13336–133341 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Heid, C. A., Stevens, J., Livak, K. J. & Williams, P. M. Real time quantitative PCR. Genome Res. 6, 986–994 (1996).

    Article  CAS  PubMed  Google Scholar 

  132. Wang, W. et al. Design of multiplexed detection assays for identification of avian influenza a virus subtypes pathogenic to humans by SmartCycler real-time reverse transcription-PCR. J. Clin. Microbiol. 47, 86–92 (2009).

    Article  CAS  PubMed  Google Scholar 

  133. Lockhart, D. J. et al. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat. Biotechnol. 14, 1675–1680 (1996).

    Article  CAS  PubMed  Google Scholar 

  134. Mook, S., Van't Veer, L. J., Rutgers, E. J., Piccart-Gebhart, M. J. & Cardoso, F. Individualization of therapy using Mammaprint: from development to the MINDACT Trial. Cancer Genom. Proteom. 4, 147–155 (2007). This paper describes the development and clinical validation trial for the Mammaprint gene expression based breast cancer recurrence test.

    CAS  Google Scholar 

  135. Paik, S. et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl. J. Med. 351, 2817–2826 (2004). This paper describes the development and clinical validation trial for the OncotypeDX gene expression based breast cancer recurrence test.

    Article  CAS  PubMed  Google Scholar 

  136. Cooperberg, M. R. et al. Validation of a cell-cycle progression gene panel to improve risk stratification in a contemporary prostatectomy cohort. J. Clin. Oncol. 31, 1428–1434 (2013).

    Article  CAS  PubMed  Google Scholar 

  137. Learn, C. A. et al. Resistance to tyrosine kinase inhibition by mutant epidermal growth factor receptor variant III contributes to the neoplastic phenotype of glioblastoma multiforme. Clin. Cancer Res. 10, 3216–3224 (2004).

    Article  CAS  PubMed  Google Scholar 

  138. Robinson, D. et al. Integrative clinical genomics of advanced prostate cancer. Cell 161, 1215–1228 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Mody, R. J. et al. Integrative clinical sequencing in the management of refractory or relapsed cancer in youth. JAMA 314, 913–925 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Sekulic, A. et al. Personalized treatment of Sezary syndrome by targeting a novel CTLA4:CD28 fusion. Mol. Genet. Genom. Med. 3, 130–136 (2015).

    Article  CAS  Google Scholar 

  141. Craig, D. W. et al. Genome and transcriptome sequencing in prospective metastatic triple-negative breast cancer uncovers therapeutic vulnerabilities. Mol. Cancer Ther. 12, 104–116 (2013). One of the first papers investigating integration of whole-transcriptome sequencing and genome sequencing for targeted therapy selection in advanced metastatic triple-negative breast cancer.

    Article  CAS  PubMed  Google Scholar 

  142. Borad, M. J. et al. Integrated genomic characterization reveals novel, therapeutically relevant drug targets in FGFR and EGFR pathways in sporadic intrahepatic cholangiocarcinoma. PLoS Genet. 10, e1004135 (2014). This paper describes the discovery of therapeutically actionable events including novel oncogenic fusions in FGFR2 identified by RNA-sequencing.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Greco, F. A., Lennington, W. J., Spigel, D. R. & Hainsworth, J. D. Molecular profiling diagnosis in unknown primary cancer: accuracy and ability to complement standard pathology. J. Natl Cancer Inst. 105, 782–790 (2013).

    Article  CAS  PubMed  Google Scholar 

  144. Paik, S. et al. Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J. Clin. Oncol. 24, 3726–3734 (2006).

    Article  CAS  PubMed  Google Scholar 

  145. Albain, K. S. et al. Prognostic and predictive value of the 21-gene recurrence score assay in postmenopausal women with node-positive, oestrogen-receptor-positive breast cancer on chemotherapy: a retrospective analysis of a randomised trial. Lancet Oncol. 11, 55–65 (2010).

    Article  CAS  PubMed  Google Scholar 

  146. Knezevic, D. et al. Analytical validation of the Oncotype DX prostate cancer assay - a clinical RT-PCR assay optimized for prostate needle biopsies. BMC Genomics 14, 690 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Clark-Langone, K. M., Sangli, C., Krishnakumar, J. & Watson, D. Translating tumor biology into personalized treatment planning: analytical performance characteristics of the OncotypeDX Colon Cancer Assay. BMC Cancer 10, 691 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Zhang, Y. et al. Breast cancer index identifies early-stage estrogen receptor-positive breast cancer patients at risk for early- and late-distant recurrence. Clin. Cancer Res. 19, 4196–4205 (2013).

    Article  CAS  PubMed  Google Scholar 

  149. Wallden, B. et al. Development and verification of the PAM50-based Prosigna breast cancer gene signature assay. BMC Med. Genom. 8, 54 (2015).

    Article  CAS  Google Scholar 

  150. Salazar, R. et al. Gene expression signature to improve prognosis prediction of stage II and III colorectal cancer. J. Clin. Oncol. 29, 17–24 (2011).

    Article  PubMed  Google Scholar 

  151. Erho, N. et al. Discovery and validation of a prostate cancer genomic classifier that predicts early metastasis following radical prostatectomy. PLoS ONE 8, e66855 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Meiri, E. et al. A second-generation microRNA-based assay for diagnosing tumor tissue origin. Oncologist 17, 801–812 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Taubert, H. et al. Expression of the stem cell self-renewal gene Hiwi and risk of tumour-related death in patients with soft-tissue sarcoma. Oncogene 26, 1098–1100 (2007).

    Article  CAS  PubMed  Google Scholar 

  154. Baraniskin, A. et al. Circulating U2 small nuclear RNA fragments as a novel diagnostic biomarker for pancreatic and colorectal adenocarcinoma. Int. J. Cancer 132, E48–E57 (2013).

    Article  CAS  PubMed  Google Scholar 

  155. Su, J. et al. Analysis of small nucleolar RNAs in sputum for lung cancer diagnosis. Oncotarget http://dx.doi.org/10.18632/oncotarget.4219 (2015).

  156. Du, Z. et al. Integrative genomic analyses reveal clinically relevant long noncoding RNAs in human cancer. Nat. Struct. Mol. Biol. 20, 908–913 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Li, P. et al. Using circular RNA as a novel type of biomarker in the screening of gastric cancer. Clin. Chim. Acta 444, 132–136 (2015).

    Article  CAS  PubMed  Google Scholar 

  158. Guo, Y. et al. Transfer RNA detection by small RNA deep sequencing and disease association with myelodysplastic syndromes. BMC Genomics 16, 727 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Westermann, A. J. et al. Dual RNA-seq unveils noncoding RNA functions in host-pathogen interactions. Nature 529, 496–501 (2016).

    Article  CAS  PubMed  Google Scholar 

  160. Patton, J. G. et al. Biogenesis, delivery, and function of extracellular RNA. J. Extracell. Vesicles 4, 27494 (2015).

    Article  CAS  PubMed  Google Scholar 

  161. Brinkmann, K. et al. Exosomal RNA-based liquid biopsy detection of EML4-ALK in plasma from NSCLC patients. 16th World Conference on Lung Cancer Abstract 2591 (IASLC, 2015).

Download references

Acknowledgements

The authors acknowledge funding from the Ben and Catherine Ivy Foundation and the National Center for Advancing Translational Sciences (exRNA Signatures Predict Outcomes After Brain Injury; UH3-TR000891). Research was also supported by a Stand Up To Cancer – Melanoma Research Alliance Melanoma Dream Team Translational Cancer Research Grant. Stand Up To Cancer is a programme of the Entertainment Industry Foundation administered by the American Association for Cancer Research. The authors apologize to those whose work could not be cited or discussed owing to space constraints.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. Craig.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Glossary

Next-generation sequencing

(NGS). High-throughput, massively parallel sequencing technology that is used in various applications, including whole-genome sequencing, exome sequencing and RNA sequencing.

Open platform

A technology platform that does not depend on genome annotation, or on predesigned species-specific or transcript-specific probes, for transcript measurement. RNA-seq technology functions as an open platform allowing for unbiased detection of both known and novel transcripts.

Single nucleotide variants

(SNVs). Single nucleotide (A, T, G or C) alterations in a DNA sequence.

Reference standards

Highly characterized and standardized control materials that are used to ensure accuracy and comparability of assays.

Spearman correlation

Statistical measure of the strength of association between two rank-ordered variables.

Phasing

Evaluation of closely situated mutations to determine whether they reside on the same or different alleles.

Break-apart probes

A DNA probe system used to detect rearrangements involving specific loci. Probes for a region 5′ of the designated breakpoint are labelled with one colour and probes for a region 3′ of the breakpoint are labelled with another colour. An overlapping signal (such as yellow for red and green probes) indicates a normal pattern, whereas distinct signals (that is, red and green) indicate the presence of a rearrangement.

Structural variants

Genomic variants, other than single-nucleotide variants, involving large regions of DNA, including insertions, deletions, inversions and duplications.

Single nucleotide polymorphisms

(SNPs). Single nucleotide alterations that represent single base-pair variation at a specific DNA position among individuals, the majority of which are inherited.

Nonsense-mediated decay

A translation-coupled RNA decay mechanism whereby aberrant mRNAs with premature stop codons are recognized and degraded.

Expression quantitative trait loci

(eQTLs). Genomic loci that regulate the quantitative phenotypic trait of gene expression. Genetic markers at these loci are associated with measurable changes in gene expression.

RNA split reads

RNA sequencing reads that are split — for example, to accommodate exon junctions.

Extracellular RNAs

(exRNAs). RNAs found outside of the cell, they can be protected within vesicles or in association with RNA-binding proteins, and they can include exogenous sequences.

Clinical Laboratory Improvement Amendments

(CLIA). All laboratory testing on humans in the United States is regulated by The Centers for Medicare and Medicaid Services through CLIA. The purpose is to ensure quality and uniformity of laboratory tests.

Metagenomic RNA-seq

A method of sequencing the entirety of the available RNA in a complex (for example, clinical or environmental) sample, which may or may not include steps to subtract the host RNA to improve or enrich for microbial RNA.

RNA-based amplicon sequencing

A method of direct sequencing of cDNA amplicons of RNA targets from a clinical sample. This can be multiplexed and can involve RNA viral genomes, microbial or host mRNA transcripts, or exogenous RNA targets.

Microbiome

The totality of the genomic content of microbial community members in a complex (for example, clinical or environmental) sample. In the human microbiome, each body site has its own unique microbiome; the entirety of the microbiome on and in an individual person is considered that person's pan-microbiome.

Companion diagnostic

In vitro diagnostic tests that provide information critical for the safe and effective use of a corresponding therapeutic agent. These tests are used to select patients for treatment with specific agents, including identifying patient populations with predicted efficacy as well as those that should not receive the agent due to a low likelihood of effectiveness or possible serious adverse events from the therapy.

Variant call format

Standard text file format for storing genomic sequence variant data, with each line of the file describing a variant present at a specific genomic region or position.

Binary alignment/map format

(BAM format). Standard file format for storing sequencing reads with alignments. BAM files are binary representations of the sequence alignment/map (SAM) format.

In vitro diagnostic tests

Laboratory tests used to detect health conditions, infections or diseases. These diagnostic tests are performed using a sample collected from the patient without direct physical interaction between the test and the patient. In the United States, in vitro diagnostics are regulated by the US Food and Drug Administration (FDA).

Triple-negative breast cancer

A breast cancer subtype characterized as oestrogen receptor-negative, progesterone receptor-negative and ERBB2 (also known as HER2)-negative.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Byron, S., Van Keuren-Jensen, K., Engelthaler, D. et al. Translating RNA sequencing into clinical diagnostics: opportunities and challenges. Nat Rev Genet 17, 257–271 (2016). https://doi.org/10.1038/nrg.2016.10

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg.2016.10

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer