「TDA」を含む日記 RSS

はてなキーワード: TDAとは

2025-10-21

数学の分類はこんな感じか

フェミニズムの分類が多すぎると聞いて

anond:20251020210124

0. 基礎・横断

集合論

公理集合論(ZFC, ZF, GCH, 大きな基数)

記述集合論(Borel階層, Projective階層, 汎加法族)

強制法フォーシング), 相対的一致・独立

理論理学

述語論理(完全性定理, コンパクト性)

モデル理論(型空間, o-極小, NIP, ステーブル理論

証明論(序数解析, カット除去, 直観主義論理

再帰理論/計算可能性(チューリング度, 0′, 相対計算可能性)

圏論

関手自然変換, 極限/余極限

加群圏, アーベル圏, 三角圏, 派生

トポス論, モナド, アジュンクション

数学基礎論哲学

構成主義, 直観主義, ユニバース問題, ホモトピー型理論(HoTT)

1. 代数学

群論

組み合わせ群論(表示, 小石定理, 自由群)

代数群/リー群表現, Cartan分解, ルート系)

幾何群論ハイパーリック群, Cayleyグラフ

環論

可換環論(イデアル, 局所化, 次元理論, 完備化)

可換環アルティン環, ヘルシュタイン環, 環上加群

体論・ガロア理論

体拡大, 分解体, 代数独立, 有限体

表現

群・リー代数表現(最高ウェイト, カズダン–ルスティグ)

既約表現, 調和解析との関連, 指標

ホモロジー代数

射影/入射解像度, Ext・Tor, 派生関手

K-理論

アルバースカルーア理論, トポロジカルK, 高次K

線形代数

ジョルダン標準形, 特異値分解, クリフォード代数

計算代数

Gröbner基底, 多項式時間アルゴリズム, 計算群論

2. 数論

初等数論(合同, 既約性判定, 二次剰余)

代数的数論(代数体, 整環, イデアル類群, 局所体)

解析数論(ゼータ/ L-関数, 素数定理, サークル法, 篩法)

p進数論(p進解析, Iwasawa理論, Hodge–Tate)

算術幾何楕円曲線, モジュラー形式, 代数多様体の高さ)

超越論(リンマンヴァイエルシュトラス, ベーカー理論

計算数論(楕円曲線法, AKS素数判定, 格子法)

3. 解析

実解析

測度論・ルベーグ積分, 凸解析, 幾何的測度論

複素解析

変数リーマン面, 留数, 近似定理

変数(Hartogs現象, 凸性, several complex variables)

関数解析

バナッハ/ヒルベルト空間, スペクトル理論, C*代数, von Neumann代数

調和解析

フーリエ解析, Littlewood–Paley理論, 擬微分作用素

確率解析

マルチンゲール, 伊藤積分, SDE, ギルサノフ, 反射原理

実関数論/特殊関数

ベッセル, 超幾何, 直交多項式, Rieszポテンシャル

4. 微分方程式力学系

常微分方程式(ODE)

安定性, 分岐, 正準系, 可積分系

偏微分方程式(PDE)

楕円型(正則性, 変分法, 最小曲面)

放物型(熱方程式, 最大原理, Harnack)

双曲型(波動, 伝播, 散乱理論

非線形PDE(Navier–Stokes, NLS, KdV, Allen–Cahn)

幾何解析

リッチ流, 平均曲率流, ヤンミルズ, モノポールインスタント

力学系

エルゴード理論(Birkhoff, Pesin), カオス, シンボリック力学

ハミルトン力学, KAM理論, トーラス崩壊

5. 幾何学・トポロジー

位相幾何

点集合位相, ホモトピーホモロジー, 基本群, スペクトル系列

幾何トポロジー

3次元多様体幾何化, 結び目理論, 写像類群)

4次元トポロジー(Donaldson/Seiberg–Witten理論

微分幾何

リーマン幾何(曲率, 比較幾何, 有界幾何

シンプレクティック幾何(モーメント写像, Floer理論

複素/ケーラー幾何(Calabi–Yau, Hodge理論

代数幾何

スキーム, 層・層係数コホモロジー, 変形理論, モジュライ空間

有理幾何(MMP, Fano/一般型, 代数曲線/曲面)

離散幾何・凸幾何

多面体, Helly/Carathéodory, 幾何極値問題

6. 組合せ論

極値組合せ論(Turán型, 正則性補題

ランダムグラフ/確率方法(Erdős–Rényi, nibble法)

加法組合せ論(Freiman, サムセット, Gowersノルム)

グラフ理論

彩色, マッチング, マイナー理論(Robertson–Seymour)

スペクトルグラフ理論, 拡張グラフ

組合設計ブロック設計, フィッシャーの不等式)

列・順序・格子(部分順序集合, モビウス反転)

7. 確率統計

確率論(純粋

測度確率, 極限定理, Lévy過程, Markov過程, 大偏差

統計

数理統計推定, 検定, 漸近理論, EM/MD/ベイズ

ベイズ統計MCMC, 変分推論, 事前分布理論

多変量解析(主成分, 因子, 判別, 正則化

ノンパラメトリックカーネル法, スプライン, ブーストラップ

実験計画/サーベイ, 因果推論(IV, PS, DiD, SCM

時系列(ARIMA, 状態空間, Kalman/粒子フィルタ

確率最適化/学習理論

PAC/VC理論, 一般境界, 統計学習

バンディット, オンライン学習, サンプル複雑度

8. 最適化オペレーションリサーチ(OR)

凸最適化

二次計画, 円錐計画(SOCP, SDP), 双対性, KKT

凸最適化

多峰性, 一階/二階法, 低ランク, 幾何的解析

離散最適化

整数計画, ネットワークフロー, マトロイド, 近似アルゴリズム

確率的/ロバスト最適化

チャンス制約, 分布ロバスト, サンプル平均近似

スケジューリング/在庫/待ち行列

Little法則, 重み付き遅延, M/M/1, Jackson網

ゲーム理論

ナッシュ均衡, 進化ゲーム, メカニズムデザイン

9. 数値解析・計算数学科学計算

数値線形代数(反復法, 直交化, プリコンディショニング)

常微分方程式の数値解法(Runge–Kutta, 構造保存)

PDE数値(有限要素/差分/体積, マルチグリッド

誤差解析・条件数, 区間演算, 随伴

高性能計算HPC)(並列アルゴリズム, スパー行列

シンボリック計算(CAS, 代数的簡約, 決定手続き

10. 情報計算暗号(数理情報

情報理論

エントロピー, 符号化(誤り訂正, LDPC, Polar), レート歪み

暗号理論

公開鍵RSA, 楕円曲線, LWE/格子), 証明可能安全性, MPC/ゼロ知識

計算複雑性

P vs NP, ランダム化・通信・回路複雑性, PCP

アルゴリズム理論

近似・オンライン確率的, 幾何アルゴリズム

機械学習の数理

カーネル法, 低次元構造, 最適輸送, 生成モデル理論

11. 数理物理

古典/量子力学の厳密理論

C*代数量子論, 散乱, 量子確率

量子場の数理

くりこみ群, 構成的QFT, 共形場理論CFT

統計力学の数理

相転移, くりこみ, Ising/Potts, 大偏差

可積分系

逆散乱法, ソリトン, 量子可積分モデル

理論幾何

鏡映対称性, Gromov–Witten, トポロジカル弦

12. 生命科学医学社会科学への応用数学

数理生物学

集団動態, 進化ゲーム, 反応拡散, 系統樹推定

数理神経科学

スパイキングモデル, ネットワーク同期, 神経場方程式

疫学感染症数理

SIR系, 推定制御, 非均質ネットワーク

計量経済金融工学

裁定, 確率ボラ, リスク測度, 最適ヘッジ, 高頻度データ

社会ネットワーク科学

拡散, 影響最大化, コミュニティ検出

13. シグナル・画像データ科学

信号処理

時間周波数解析, スパー表現, 圧縮センシング

画像処理/幾何処理

変動正則化, PDE法, 最適輸送, 形状解析

データ解析

多様体学習, 次元削減, トポロジカルデータ解析(TDA

統計機械学習回帰/分類/生成, 正則化, 汎化境界

14. 教育歴史方法

数学教育学(カリキュラム設計, 誤概念研究, 証明教育

数学史(分野別史, 人物研究, 原典講読)

計算支援定理証明

形式数学(Lean, Coq, Isabelle), SMT, 自動定理証明

科学哲学数学実在論/構成主義, 証明発見心理

2025-09-13

dorawii@執筆依頼募集中

俺の名は❗電車から降りたいのに❗ドア前からどかないやつらにぶつかりおじさん🤪

-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA512

https://anond.hatelabo.jp/20250913181230# 
-----BEGIN PGP SIGNATURE-----

iHUEARYKAB0WIQTEe8eLwpVRSViDKR5wMdsubs4+SAUCaMU1gQAKCRBwMdsubs4+
SBfUAQDVl7kzbxzxGQqSxQ/7AbnBX7Ecv21QYUuCxbqQ5ZXicQEAy7Fxb9Fjrlyr
qVJnOEKjU0jKF/jZXcnezE8FDZh0NQY=
=/tDA
-----END PGP SIGNATURE-----

2025-01-26

次元データ空間における幾何学構造

次元データ空間幾何学構造は、情報科学におけるテーマであり、非線形性、トポロジーリーマン多様体などの数学概念必要とする。

非線形多様体とその埋め込み

次元データはしばしば非線形多様体としてモデル化される。

このような多様体は、局所的には線形空間として振る舞うが、全体としては非線形構造を持つ。

例えば、データがN次元ユークリッド空間に埋め込まれている場合、その埋め込みは必ずしもユークリッド距離に基づくものではなく、リーマン計量を用いた距離関数適用されることが多い。

このアプローチは、確率分布パラメータ空間リーマン多様体として扱うことで、統計的推定機械学習アルゴリズム設計に新たな視点提供する。

フィッシャー情報行列と曲率

リーマン多様体上の最適化問題を扱う際には、フィッシャー情報行列重要役割を果たす。

フィッシャー情報行列は、パラメータ空間内の点での曲率を測定し、その逆行列最適化アルゴリズムにおける収束速度に影響を与える。

具体的には、フィッシャー情報行列固有値分解を通じて、多様体上の最適化問題における局所的な最適解の安定性や収束性を評価することが可能となる。

ポロジカルデータ解析(TDA

ポロジカルデータ解析は、高次元データ幾何学構造理解するための強力な手法である

特に、持続的ホモロジーやベッチ数といったトポロジー概念を用いることで、高次元空間内でのデータポイント間の関係性を捉えることができる。

持続的ホモロジーは、データセットが持つトポロジカル特徴を抽出し、その変化を追跡する手法であり、多様体の形状や穴の数などを定量化することが可能である

スケール不変性とフィルタリング

TDAでは、スケール不変性が重要特性となる。

これは、異なるスケールデータを観察しても同じトポロジカル特徴が得られることを意味する。

具体的には、フィルタリング手法(例:距離行列やk近傍グラフ)を用いてデータポイント間の関係性を構築し、その後持続的ホモロジー計算することで、高次元空間内でのデータ構造を明らかにする。

次元空間における距離関数とその最適化

次元空間では、距離関数選択が極めて重要である

ユークリッド距離だけでなく、マンハッタン距離コサイン類似度など、多様な距離関数存在し、それぞれ異なる幾何学特性を反映する。

特に、高次元空間における距離関数選択は、クラスタリングアルゴリズムや分類器の性能に直結するため、その理論根拠実用的応用について深く考察する必要がある。

構造化された距離関数

さらに進んだアプローチとして、構造化された距離関数(例:Mahalanobis距離)やカーネル法による非線形変換が挙げられる。

これらは、高次元空間内でのデータポイント間の関係性をより正確に捉えるために設計されており、多様体学習カーネル主成分分析(KPCA)などで活用されている。

2024-12-25

anond:20241223221615

L?K?OTDK東京電気株式会社だろ、TDA東亜国内航空だろ、LTD?リミテッドだろ、LPG液化天然ガスだろ、PTAペアレンツアンドティーチャーアソシエーションだろ、OHPオーバーヘッドプロジェクターだろ、GTO湘南純愛組!の続編だろ、FTR?内外問わずレーサーとは似ても似つかない性能のフラットラッカーイメージの車種だろ、UFOアンノウンフライトオブジェクトでユーエフオーって呼ぶのが正解だろ、LDKラスト男子高校生だろ、」

2022-12-15

tdaモデルの人って絵も描いてたみたいだけど絵の方はモデルから予想されるほど緻密さがないんだな。髪とか目のグラデージョンが単純。もっといつか天魔のクロウサギみたいな感じの方向性の画風の上位互換みたいなのを期待してたんだが。

イラスト描けなくてもモデルは作れるもんなのか?そこらへん疎いからよくわからんイラストあってそれを3Dに落とし込んでのモデルってわけじゃくて意外と独立してるのか?

3dモデルの出来で刺さる絵師見つけようとしたがやめた方がよさそうだな。そもそもモデル作成者イラスト描きも兼任ってのがそこまで多くないのかも。

2019-03-12

anond:20190312040042

初音ミクTDA化して線が細かくなっても全然はやらずオワコンになった

老いがないバーチャルアイドルも飽きられるということは人間アイドルが飽きられるのは甥が理由ではない

 
ログイン ユーザー登録
ようこそ ゲスト さん