Which technologies will dominate in 2025? And what skills do you need to keep up? Check it out
ã¯ããã« R advent calendar 2014, 12æ3æ¥æ å½åã§ã. Rã®ã³ã¼ãã¯åºã¦ãã¾ãã. éçã®ãã¼ã¿ã§éã³ãã ç§ã¯æ®æ®µ, ã¡ã¸ã£ã¼ãªã¼ã°ã®ãã¼ã¿ã§éãã§ãã¾ã. ã¨ããã®ã, æ´å½¢ãããã¡ã¸ã£ã¼ãªã¼ã°ã®è©³ç´°ãªãã¼ã¿ãç°¡åã«åå¾ã§ããããã§ã. åå¹´åã«ä½ã£ãã¹ã©ã¤ãã§ç³ã訳ãªãã®ã§ãã, ãããªæãã§ã. Rã§éçãã¼ã¿è§£æãããã ( pitchRxã使ã ) from Takuma Hatano Rã§éçãã¼ã¿è§£æãããã ( pitchRxã使ã ) pitchFxã¯, ã¡ã¸ã£ã¼ãªã¼ã°ã®æçã«é¢ãããã¼ã¿(ãéããã·ã¹ãã )ã§ã. Rã§pitchRxããã±ã¼ã¸ã使ãã¨ç°¡åã«åå¾ã§ãã¾ã. ä»ã«ã, ã¡ã¸ã£ã¼ãªã¼ã°ã®ãã¼ã¿ã¯ç°¡åã«åå¾ã§ãã¾ã. retrosheetã¨ããå£ä½ããã¼ã¿ãã¾ã¨ãã¦ããã¦ããã®ã§, ãã¦ã³ãã¼ããã¦æ´å½¢ãã¦csvãåºåãã¦ãããã¹ã¯ãª
ã¯ããã« åå, å¤§ç¸æ²ã®ãã¼ã¿ãæ£ããä½ãã®ãè¾ã, ã¨ãããã¨ãæ¸ãã¾ãã. Rã§ã¹ãã¼ããã¼ã¿è§£æãããã: ãã¼ã¿ãä½ãã®ã£ã¦å¤§å¤ã§ãã - 300å忬²ãã ã¾ã æ´å½¢ã§ãã¦ããªãã®ã§ãã, ç¾æ®µéã§å¯è½ãªè§£æããããã¨æãã¾ã. å «ç¾é·åé¡ãæ°ã«ãªãã¾ãã®ã§, åç§æ¥½ã®åçãéè¨ãã¦ã¿ã¾ã. å è¡ç ç©¶ å¤§ç¸æ²ã®ã¢ãã¼ããªã¼. 2010å¹´ã«æ¸ãããè¨äºã§ã. å «ç¾é·ããããããã©ãã, ã¨ããè§£æã§ã. å®è·µï¼ Rã§å¦ã¶çµ±è¨è§£æã®åºç¤ï¼8ï¼ï¼å¤§ç¸æ²ã®ã¢ãã¼ããªã¼ ï¼2ï¼ (2/2) - ï¼ IT ãããããã®è¨ç®ã®è¿½è©¦ããä½ããã®è¿½å è¨ç®ããããæ¹ãããã£ããã£ãããæ¯éã¨ããã®çµæãæãã¦ãã ãããã¨ãç±æãã¾ãã ã¾ãã1999年以å10å¹´éç¨åº¦ã®å両ã»å¹å ã®åæãã¼ã¿ãæã£ã¦ããã£ãããæ¹ãããã¾ãããããã®ãã¼ã¿ãæä¾ããã ããã°ãããä¸å±¤è¸ã¿è¾¼ãã ãã¨ãåæã§ããã¨æãã¾ã
追è¨(2015/03/14) 第7ç« ã®æ±ºå®æ¨ã®ã¨ããã§åãä¸ãã{mvpart}ããã±ã¼ã¸ã®ãµãã¼ããåããCRANããåé¤ããã¦ãã¾ã£ãããinstall.packages颿°ã§ã¯ã¤ã³ã¹ãã¼ã«ã§ããªããªã£ã¦ãã¾ããç¾å¨ã®ã¤ã³ã¹ãã¼ã«æ¹æ³ãæå¾ã«è¿½è¨ãã¾ããã 追è¨(2014/09/18) å®ã¯Googleããã¯ã¹ã§ç«ã¡èªã¿å¯è½ã§ã æèå ¬å¼ãµãã¼ããã¼ã¸ã¨ç¸äºãªã³ã¯ãã¦ãã¾ãããµã³ãã«ãã¼ã¿ã¨æ£èª¤è¡¨ã¯ãã¡ãããåç §ãã ãã ã¨ãããã¨ã§ã以ä¸ã®éãæèãæãåãããªããå¦ã¶ããã¸ãã¹ã«æ´»ãããã¼ã¿ãã¤ãã³ã°ãï¼æè¡è©è«ç¤¾ï¼ãæ¬æ¥çºå£²ã¨ç¸æãã¾ããï¼é½å ã®å¤§åæ¸åºã§ã¯å é±åã°ããå è¡è²©å£²ãã¦ããæ¨¡æ§ã§ãï¼ã æãåãããªããå¦ã¶ ãã¸ãã¹ã«æ´»ãããã¼ã¿ãã¤ãã³ã° ä½è : å°¾å´éåºç社/ã¡ã¼ã«ã¼: æè¡è©è«ç¤¾çºå£²æ¥: 2014/08/22ã¡ãã£ã¢: åè¡æ¬ï¼ã½ããã«ãã¼ï¼ãã®ååãå«ãããã°
ããæ°å¹´ãç§ã¯ãã¼ã¿ãµã¤ã¨ã³ã¹ã«ã¤ãã¦å¦ãã§ãã¾ããããããã®å¦ç¿è³æãç´¹ä»ãããã¨æãã¾ãã æå¸«ç¨ã®æç§æ¸ã¨åå¿è ç¨ã®æç§æ¸ ç§èªèº«ããã¼ã¿ãµã¤ã¨ã³ã¹ãå¦ã¼ãã¨ãã¦è²ã ãªã½ã¼ã¹ã試ãã¦ã¿ã¾ãããæ®å¿µãªãã¨ã«ãæ¥æ¬èªã®è¯ãå¦ç¿è³æã¯è¦ã¤ãããã¾ããã§ãããã©ããã®ããã°ã§èªãã ãã¨ãããã¾ãããæç§æ¸ã¯æå¸«ç¨ã¨å¦çç¨ã®äºé±é¡ãããããã§ããä¸ã¤ãã¯å å®¹ãæ¢ã«åãã£ã¦ããæå¸«ã®çºã®æç§æ¸ã§ãæ¥æ¬ã¯ãã®ã¿ã¤ãã§ããããä¸ã¤ã®ã¿ã¤ãã®æç§æ¸ã¯èªå¦èªç¿ãç®çã«ä½ããã¦ããã®ã§ãæå¸«ãªãã§å¦ã¶ã§ããæç§æ¸ã«ãªã£ã¦ããã¨ãããã¨ã§ãã¢ã¡ãªã«ã¯ãã®ã¿ã¤ãã®æç§æ¸ãå¤ãã§ããç§èªèº«ãä»ã®æç³»ã»çç³»ã®æç§æ¸ãæ¢ããæãã¢ã¡ãªã«ã®æç§æ¸ã®æ¹ãåãããããããã®æ¬ã ããèªãã°åããããã«ãªã£ã¦ããã¨åãå°è±¡ãæã¡ã¾ããã ãªã³ã©ã¤ã³æè²ï¼MOOCï¼ ã¢ã¡ãªã«ã¯ç§å¦æè²ã«ç±å¿ã§ãããæè¿ã¯ããã®MOOCã§ãè±å¯
é£è¼ããã¯ãã³ãã¼ ã¯ããã« ä»åã¯æç³»ååæã«ã¤ãã¦ç´¹ä»ãã¾ãããã¸ãã¹ã§çæããããã¼ã¿ã®å¤ããâæéâã®é ç®ãå«ãæç³»åãã¼ã¿ã§ã1é±éã®å¾åãå£ç¯å¤åãªã©ãåæããéãªã©ããã¾ãã¾ãªå ´é¢ã§æç³»åã®åæãå¿ è¦ã¨ãªãã¾ãã æç³»ååæï¼Time Series Analysisï¼ã¨ã¯ï¼ æç³»ååæï¼Time Series Analysisï¼ã¯ãæ ªä¾¡ãçºæ¿ã¬ã¼ããªã©éèé¢é£ã®æéã¨ã¨ãã«å¤åãããã¼ã¿ãåæãäºæ¸¬ããããã«çºéãã¦ãã¾ããããæç³»åè¨éçµæ¸å¦ï¼Time Series Econometricsï¼ããªã©ã®å¦åã®ä¸ã§è«ãããã¦ãããã¼ã¿åæã®ä¸ã§ã¯ãæ¯è¼çæ´å²ã®ãããã¼ãã§ããããã ãã«ãå®å¼åããããã®ãã¾ãã¾ãªã¢ãã«ãææ¡ããã¦ãã¦ã1ã¤ã®å¤éãåæããããã®ã¢ãã«ã ãã§ãã表1ã®ããã«å¤ãã®ã¢ãã«ãããã¾ãã ç¥ç§° 説æ AR
ä¸è¬ã«ããã¼ã¿åæã®å¤§åã¯ããã»ã©é«åº¦ãªãã¯ããã¯ã®é¡ãå¿ è¦ã¨ããªããã®ã§ããåã常æ¥é ããå£ã«åºãã¦è¨ããã¨ãå¤ããã§ããããçµ±è¨å¦ã ã®æ©æ¢°å¦ç¿ã ã®ã®åºçªãªãã¦ããããå°ãªãã¦å½ããåããå·¥æ°ããããããã§ããã°ãããªãæ¹ãè¯ãã§ããã¶ã£ã¡ããåç´ãªååæ¼ç®ã§ååãªã±ã¼ã¹ã®æ¹ã夿°æ´¾ã§ãããã ãªã®ã§ãæ®æ®µã¯DBä¸ã§SQLï¼ã¨ãããHiveãªã©ï¼ã§ãµã¯ãã¨ååæ¼ç®ã ãã§éè¨å¦çãæ¸ã¾ãã¦ãã¾ã£ã¦ããã®çµæã ãã表示ããããã«ãã¦ãããæ¹ãå§åçã«æ¥½ã§æã£åãæ©ãã¯ããå¤ãã®BIãã¼ã«ãããããèãã®ãã¨ã§ä½ããã¦ããã¨æãã¾ãã ã¨ãããã©ã£ãããä¸ã®ä¸ã«ã¯ãåç´ãªååæ¼ç®ã§ã®éè¨çµæã¨ããã¼ã¿ãµã¤ã¨ã³ã¹ãé§ä½¿ããåæçµæã¨ã§ãé£ãéã£ã¦ãã¾ãã±ã¼ã¹ã使 ããããã¨ãç¥ããã¦ãã¾ããã©ã¡ããã¨è¨ãã¨ã¬ã¢ã±ã¼ã¹ã ã¨ã¯æãã¾ããããã®çç¾ããããªãã«ããã¨ã¨ãã§ããªããã¨ã«ãªããã¨ãå¤ã ãã
ã¯ããã« çµ±è¨è§£æã®ææ³ãå¦ã¶ã®ã«ãæç§æ¸ãèªãã®ã¯ç´ æ´ãããå¦ç¿æ¹æ³ã§ãã ããããæç§æ¸ã§çè«çãªãã¨ãå¦ãã ã ãã§ã¯ãçµ±è¨ææ³ã使ãããªããããã«ã¯ãªãã¾ããã çµ±è¨è§£æææ³ã身ã«ã¤ããã«ã¯ãå®éã®ãã¼ã¿ã«ã¤ãã¦ææ³ãé©ç¨ãããã©ã¡ã¼ã¿ãå¤ãããªã©ã®è©¦è¡é¯èª¤ãè¡ããçµæãèå¯ããã¨ãããããªçµé¨ãç©ããã¨ã大åã§ãã ããã§ã¯å®éã®ãã¼ã¿ãã©ããã£ã¦æã«å ¥ãã¾ããããï¼ å®é¨ã調æ»ããã¦å®éã®ãã¼ã¿ãå¾ãã®ã¯å¤§å¤ã§ãéããããã¾ãã 幸éãªãã¨ã«ãä¸ã®ä¸ã«ã¯é©åº¦ãªãµã¤ãºã®èªç±ã«ä½¿ãããã¼ã¿ãããããåå¨ãã¾ãã ä¾ãã°ãçµ±è¨è¨èª R ã«ã¯ã100以ä¸ãã®ãã¼ã¿ã»ãããããã©ã«ãã§ä»å±ãã¦ãã¾ãã ãã ããä¸å¹¸ãªãã¨ã«ããããã®ã»ã¨ãã©ã¯è±èªã§èª¬æãæ¸ããã¦ãã¾ãã è±èªã¯ããã¤ãã¯ä¹ãè¶ããªããã°ãªããªãå£ã§ãããæåã®ãã¡ã¯ã¡ãã£ã¨é¿ãã¦éãããã¨ããã§ãã ã¨ããããã§ã仿¥ã¯ã
ããã¾ãã¦ããã§ã¨ããããã¾ãã æ¬å¹´ããããããé¡ããããã¾ãã 主æååæ ãã¦ãæ¨å¹´ã®çµãããããããç§ã¯ä»äºã§ä¸»æååæãè¡ã£ã¦ãã¾ãã 主æååæã¨ããã®ã¯ã夿¬¡å ã®ãã¼ã¿ãæ å ±éããªãã¹ãè½ã¨ããã«ä½æ¬¡å ã«è¦ç´ããææ³ã®ãã¨ã§ãã 主æååæã¯çµ±è¨è¨èª R ã§ç°¡åã«ã§ãã¾ãã ä¾ã¨ã㦠iris ãã¼ã¿ã§å®è¡ãã¦ã¿ã¾ãããã data(iris) data <- iris[1:4] prcomp.obj <- prcomp(data, scale=TRUE) # 主æååæ pc1 <- prcomp.obj$x[,1] # 第ä¸ä¸»æåå¾ç¹ pc2 <- prcomp.obj$x[,2] # 第äºä¸»æåå¾ç¹ label <- as.factor(iris[,5]) # åé¡ã©ãã« percent <- summary(prcomp.obj)$importance[3,2] *
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}