Digital evidence|NIST. https://www.nist.gov/topics/digital-evidence. Accessed 05 Nov 2019
A Simplified Guide To Forensic Audio and Video Analysis. http://www.forensicsciencesimplified.org/av/AudioVideo.pdf. Accessed 28 Aug 2019
ANSI National Accreditation Board|ANAB. https://www.anab.org/. Accessed 26 Aug 2019
Teerakanok, S., Uehara, T.: Digital media tampering detection techniques: an overview. In: Proceedings of IEEE 41st Annual Computer Software and Applications Conference, pp. 170–174. https://doi.org/10.1109/COMPSAC.2017.109, https://doi.org/10.1109/COMPSAC.2017.109
Imran, M., Ali, Z., Bakhsh, S.T., Akram, S.: Blind detection of copy-move forgery in digital audio forensics. IEEE Access, 12843–12855. https://doi.org/10.1109/ACCESS.2017.2717842
Ali, Z., Imran, M., Alsulaiman, M.: An automatic digital audio authentication/forensics system. IEEE Access, 2994–3007. https://doi.org/10.1109/ACCESS.2017.2672681
Chen, J., Xiang, S., Huang, H., Liu, W.: Detecting and locating digital audio forgeries based on singularity analysis with wavelet packet. Multimedia Tools Appl. 75(4), 2303–2325 (2014). https://doi.org/10.1007/s11042-014-2406-3
Article
Google Scholar
Ballesteros, D.M., Moreno, J.M.: Highly transparent steganography model of speech signals using Efficient Wavelet Masking. Expert Syst. Appl. 39(10), 9141–9149. https://doi.org/10.1016/j.eswa.2012.02.066
Goodfellow, I.J., et al.: Generative adversarial networks, pp. 1–9. https://arxiv.org/abs/1406.2661
Audio Generation with GANs - Neuronio - Medium. https://medium.com/neuronio/audio-generation-with-gans-428bc2de5a89. Accessed 16 Sept 2019
Ning, Y., He, S., Wu, Z., Xing, C., Zhang, L.-J.: Review of deep learning based speech synthesis. Appl. Sci. 9(19), 1–16. https://doi.org/10.3390/app9194050
NBA Warif et al.: Copy-move forgery detection: survey, challenges and future directions. J. Netw. Comput. Appl., 259–278 (2016). https://doi.org/10.1016/j.jnca.2016.09.008
Gul, E., Ozturk, S.: A novel hash function based fragile watermarking method for image integrity. Multimedia Tools Appl. 78(13), 17701–17718 (2019). https://doi.org/10.1007/s11042-018-7084-0
Article
Google Scholar
Milani, S., Piazza, P.F., Bestagini, P., Tubaro, S.: Audio tampering detection using multimodal features, 4563–4567. https://doi.org/10.1109/ICASSP.2014.6854466
Cuccovillo, L., Mann, S., Tagliasacchi, M., Aichroth, P.: Audio tampering detection via microphone classification. In: 2013 IEEE International Workshop on Multimedia Signal Processing. MMSP 2013, pp. 177–182 (2013). https://doi.org/10.1109/MMSP.2013.6659284
Xie, Z., Lu, W., Liu, X., Xue, Y., Yeung, Y.: Copy-move detection of digital audio based on multi-feature decision. J. Inf. Secur. Appl., 37–46. https://doi.org/10.1016/j.jisa.2018.10.003
Pan, X., Zhang, X., Lyu, S.: Detecting splicing in digital audios using local noise level estimation. In: ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, pp. 1841–1844. https://doi.org/10.1109/ICASSP.2012.6288260
Isak-Zatega, S., Lipovac, A., Lipovac, V.: Logistic regression based in-service assessment of mobile web browsing service quality acceptability. EURASIP J. Wireless Commun. Netw. 2020(1), 1–21 (2020). https://doi.org/10.1186/s13638-020-01708-2
Article
Google Scholar
Javed, A., Ejaz, A., Liaqat, S., Ashraf, A., Ihsan, M.B.: Automatic target classifier for a ground surveillance radar using linear discriminant analysis and logistic regression. In: European Microwave Week 2012: “Space for Microwaves”, EuMW 2012, Conference Proceedings, pp. 302–305 (2012)
Google Scholar
Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning
Google Scholar
Ballesteros, D.M., Moreno, J.M.: On the ability of adaptation of speech signals and data hiding. Expert Syst. Appl. 39(16), 12574–12579 (2012). https://doi.org/10.1016/j.eswa.2012.05.027
Article
Google Scholar
Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J.. [Online]. Available: http://www.math.harvard.edu/~ctm/home/text/others/shannon/entropy/entropy.pdf. Accessed 16 Sept 2019