Akolgo GA, Awafo EA, Essandoh EO, Owusu PA, Uba F, Adu-Poku KA (2021) Assessment of the potential of charred briquettes of sawdust, rice and coconut husks: using water boiling and user acceptability tests. Sci Afr 12:e00789. https://doi.org/10.1016/j.sciaf.2021.e00789
Article
CAS
Google Scholar
Amer M, Toogood H, Scrutton NS (2020) Engineering nature for gaseous hydrocarbon production. Microb Cell Factories 19(1):209. https://doi.org/10.1186/s12934-020-01470-6
Article
CAS
Google Scholar
Ardila-Suárez C, Villegas JP, de Barros Neto EL, Ghislain T, Lavoie J-M (2023) Bee green: renewable hydrocarbon fuels from honeycomb residues. Fuel 340:127319. https://doi.org/10.1016/j.fuel.2022.127319
Article
CAS
Google Scholar
Awogbemi O, Kallon DVV (2022) Valorization of agricultural wastes for biofuel applications. Heliyon 8(10):e11117. https://doi.org/10.1016/j.heliyon.2022.e11117
Article
CAS
PubMed
PubMed Central
Google Scholar
Azimov U, Okoro V, Hernandez HH (2021) Recent progress and trends in the development of microbial biofuels from solid waste—a review. Energies 14(19):6011. https://doi.org/10.3390/en14196011
Article
CAS
Google Scholar
Barragán-Ocaña A, Merritt H, Sánchez-Estrada OE, Méndez-Becerril JL, del Pilar L-BM (2023) Biorefinery and sustainability for the production of biofuels and value-added products: a trends analysis based on network and patent analysis. PLoS One 18(1):e0279659. https://doi.org/10.1371/journal.pone.0279659
Article
CAS
PubMed
PubMed Central
Google Scholar
Behera B, Selvam SM, Paramasivan B (2022) Research trends and market opportunities of microalgal biorefinery technologies from circular bioeconomy perspectives. Bioresour Technol 351:127038. https://doi.org/10.1016/j.biortech.2022.127038
Article
CAS
PubMed
Google Scholar
Bhatia SK, Gurav R, Choi Y-K, Lee H-J, Kim SH, Suh MJ, Cho JY, Ham S, Lee SH, Choi K-Y, Yang Y-H (2021) Rhodococcus sp. YHY01 a microbial cell factory for the valorization of waste cooking oil into lipids a feedstock for biodiesel production. Fuel 301:121070. https://doi.org/10.1016/j.fuel.2021.121070
Article
CAS
Google Scholar
Bumrungtham P, Promdonkoy P, Prabmark K, Bunterngsook B, Boonyapakron K, Tanapongpipat S, Champreda V, Runguphan W (2022) Engineered production of isobutanol from sugarcane trash hydrolysates in Pichia pastoris. J Fungi 8(8):767. https://doi.org/10.3390/jof8080767
Article
CAS
Google Scholar
Cabrera-Jiménez R, Mateo-Sanz JM, Gavaldà J, Jiménez L, Pozo C (2022) Comparing biofuels through the lens of sustainability: a data envelopment analysis approach. Appl Energy 307:118201. https://doi.org/10.1016/j.apenergy.2021.118201
Article
CAS
Google Scholar
Carr S, Aldridge J, Buan NR (2021) Isoprene production from municipal wastewater biosolids by engineered archaeon Methanosarcina acetivorans. Appl Sci 11(8):3342. https://doi.org/10.3390/app11083342
Article
CAS
Google Scholar
Chau KY, Moslehpour M, Tu Y-T, Tai NT, Tien NH, Huy PQ (2022) Exploring the impact of green energy and consumption on the sustainability of natural resources: empirical evidence from G7 countries. Renew Energy 196:1241–1249. https://doi.org/10.1016/j.renene.2022.07.085
Article
Google Scholar
Chavan S, Yadav B, Atmakuri A, Tyagi RD, Wong JWC, Drogui P (2022) Bioconversion of organic wastes into value-added products: a review. Bioresour Technol 344:126398. https://doi.org/10.1016/j.biortech.2021.126398
Article
CAS
PubMed
Google Scholar
Chia SR, SBHJM N, Chew KW, HSH M, Shamsuddin AH, Show PL (2022) Algae as potential feedstock for various bioenergy production. Chemosphere 287:131944. https://doi.org/10.1016/j.chemosphere.2021.131944
Article
CAS
PubMed
Google Scholar
Chilakamarry CR, Sakinah AMM, Zularisam AW, Pandey A (2021) Glycerol waste to value added products and its potential applications. Syst Microbiol and Biomanuf 1(4):378–396. https://doi.org/10.1007/s43393-021-00036-w
Article
CAS
Google Scholar
Collotta M, Champagne P, Mabee W, Tomasoni G (2018) Wastewater and waste CO2 for sustainable biofuels from microalgae. Algal Res 29:12–21. https://doi.org/10.1016/j.algal.2017.11.013
Article
Google Scholar
Cuellar-Bermudez SP, Garcia-Perez JS, Rittmann BE, Parra-Saldivar R (2015) Photosynthetic bioenergy utilizing CO2: an approach on flue gases utilization for third generation biofuels. J Clean Prod 98:53–65. https://doi.org/10.1016/j.jclepro.2014.03.034
Article
CAS
Google Scholar
Currie F, Twigg MS, Huddleson N, Simons KE, Marchant R, Banat IM (2022) Biogenic propane production by a marine Photobacterium strain isolated from the Western English Channel. Front Microbiol 13:1000247. https://doi.org/10.3389/fmicb.2022.1000247
Article
PubMed
PubMed Central
Google Scholar
Czyrnek-Delêtre MM, Ahern EP, Murphy JD (2016) Is small-scale upgrading of landfill gas to biomethane for use as a cellulosic transport biofuel economically viable?: upgrading of landfill gas to biomethane and using as a transport biofuel requires a minimum subsidy of €0.55/mn3 to allow economic viability. Biofuels Bioprod Biorefin 10(2):139–149. https://doi.org/10.1002/bbb.1627
Article
CAS
Google Scholar
Da Costa TP, Murphy F, Roldan R, Mediboyina MK, Chen W, Sweeney J, Capareda S, Holden NM (2023) Technical and environmental assessment of forestry residues valorisation via fast pyrolysis in Ireland. Biomass Bioenergy 173:106766. https://doi.org/10.1016/j.biombioe.2023.106766
Article
CAS
Google Scholar
Doliente SS, Narayan A, Tapia JFD, Samsatli NJ, Zhao Y, Samsatli S (2020) Bio-aviation fuel: a comprehensive review and analysis of the supply chain components. Front Energy Res 8:110. https://doi.org/10.3389/fenrg.2020.00110
Article
Google Scholar
Duarte JH, Fanka LS, Costa JAV (2016) Utilization of simulated flue gas containing CO2, SO2, NO and ash for Chlorella fusca cultivation. Bioresour Technol 214:159–165. https://doi.org/10.1016/j.biortech.2016.04.078
Article
CAS
PubMed
Google Scholar
Ebrahimian F, Denayer JFM, Karimi K (2022a) Efficient coproduction of butanol, ethanol, and biohydrogen from municipal solid waste through a cocultivated biorefinery. Energy Convers Manag 255:115303. https://doi.org/10.1016/j.enconman.2022.115303
Article
CAS
Google Scholar
Ebrahimian F, Karimi K, Angelidaki I (2022b) Coproduction of hydrogen, butanol, butanediol, ethanol, and biogas from the organic fraction of municipal solid waste using bacterial cocultivation followed by anaerobic digestion. Renew Energy 194:552–560. https://doi.org/10.1016/j.renene.2022.05.067
Article
CAS
Google Scholar
Emmanuel MA, Bender SG, Bilodeau C, Carceller JM, DeHovitz JS, Fu H, Liu Y, Nicholls BT, Ouyang Y, Page CG, Qiao T, Raps FC, Sorigué DR, Sun S-Z, Turek-Herman J, Ye Y, Rivas-Souchet A, Cao J, Hyster TK (2023) Photobiocatalytic strategies for organic synthesis. Chem Rev 123(9):5459–5520. https://doi.org/10.1021/acs.chemrev.2c00767
Article
CAS
PubMed
PubMed Central
Google Scholar
Gallego-García M, Moreno AD, González A, Negro MJ (2023) Efficient use of discarded vegetal residues as cost-effective feedstocks for microbial oil production. Biotechnol Biofuels 16(1):21. https://doi.org/10.1186/s13068-023-02268-5
Article
CAS
Google Scholar
García JL, Galán B (2022) Integrating greenhouse gas capture and C1 biotechnology: a key challenge for circular economy. Microb Biotechnol 15(1):228–239. https://doi.org/10.1111/1751-7915.13991
Article
PubMed
Google Scholar
Gil A (2022) Challenges on waste-to-energy for the valorization of industrial wastes: electricity, heat and cold, bioliquids and biofuels. Environ Nanotechnol Monit Manag 17:100615. https://doi.org/10.1016/j.enmm.2021.100615
Article
CAS
Google Scholar
Halog A, Awuah N (2013) Environmental assessment of a forest derived “drop-in” biofuel. In: Fang Z (ed) Biofuels – economy, environment and sustainability. InTech
Google Scholar
Heffernan JK, Valgepea K, De Souza Pinto Lemgruber R, Casini I, Plan M, Tappel R, Simpson SD, Köpke M, Nielsen LK, Marcellin E (2020) Enhancing CO2-valorization using clostridium autoethanogenum for sustainable fuel and chemicals production. Front Bioeng Biotechnol 8:204. https://doi.org/10.3389/fbioe.2020.00204
Article
PubMed
PubMed Central
Google Scholar
Hijosa-Valsero M, Garita-Cambronero J, Paniagua-García AI, Díez-Antolínez R (2019) Tomato waste from processing industries as a feedstock for biofuel production. Bioenergy Res 12(4):1000–1011. https://doi.org/10.1007/s12155-019-10016-7
Article
CAS
Google Scholar
Hill J, Nelson E, Tilman D, Polasky S, Tiffany D (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci USA 103(30):11206–11210. https://doi.org/10.1073/pnas.0604600103
Article
CAS
PubMed
PubMed Central
Google Scholar
Hoffman SM, Alvarez M, Alfassi G, Rein DM, Garcia-Echauri S, Cohen Y, Avalos JL (2021) Cellulosic biofuel production using emulsified simultaneous saccharification and fermentation (eSSF) with conventional and thermotolerant yeasts. Biotechnol Biofuels 14(1):157. https://doi.org/10.1186/s13068-021-02008-7
Article
CAS
PubMed
PubMed Central
Google Scholar
Iragavarapu GP, Imam SS, Sarkar O, Mohan SV, Chang Y-C, Reddy MV, Kim S-H, Amradi NK (2023) Bioprocessing of waste for renewable chemicals and fuels to promote bioeconomy. Energies 16(9):3873. https://doi.org/10.3390/en16093873
Article
CAS
Google Scholar
Javed F, Rehman F, Khan AU, Fazal T, Hafeez A, Rashid N (2022) Real textile industrial wastewater treatment and biodiesel production using microalgae. Biomass Bioenergy 165:106559. https://doi.org/10.1016/j.biombioe.2022.106559
Article
CAS
Google Scholar
Jiang W, Gu P, Zhang F (2018) Steps towards ‘drop-in’ biofuels: focusing on metabolic pathways. Curr Opin Biotechnol 53:26–32. https://doi.org/10.1016/j.copbio.2017.10.010
Article
CAS
PubMed
Google Scholar
Jin Q, An Z, Damle A, Poe N, Wu J, Wang H, Wang Z, Huang H (2020) High acetone-butanol-ethanol production from food waste by recombinant clostridium saccharoperbutylacetonicum in batch and continuous immobilized-cell fermentation. ACS Sustain Chem Eng 8(26):9822–9832. https://doi.org/10.1021/acssuschemeng.0c02529
Article
CAS
Google Scholar
Jin Y, Ding F, Wang J, Yi Z, Gao Y, Yang L, Fang Y, Du A, Zhao H (2022) One-step conversion of sweet potato waste to butanol via fermentation by Clostridium acetobutylicum. Biomass Conv Bioref:1–12. https://doi.org/10.1007/s13399-022-03314-2
Kallarakkal KP, Muthukumar K, Alagarsamy A, Pugazhendhi A, Naina Mohamed S (2021) Enhancement of biobutanol production using mixotrophic culture of Oscillatoria sp. in cheese whey water. Fuel 284:119008. https://doi.org/10.1016/j.fuel.2020.119008
Article
CAS
Google Scholar
Kamboj R, Ms D (2021) Orange peel extract enhanced sugar recovery and butanol production from potato peel by Clostridium acetobutylicum. Int J Green Energy 18(10):987–997. https://doi.org/10.1080/15435075.2021.1890083
Article
CAS
Google Scholar
Karatzos S, McMillan JD, Saddler JN (2014) The potential and challenges of drop-in biofuels: a report by IEA bioenergy task 39. University of British Columbia, Vancouver
Google Scholar
Karatzos S, van Dyk JS, McMillan JD, Saddler J (2017) Drop-in biofuel production via conventional (lipid/fatty acid) and advanced (biomass) routes. Part I Biofuels, Bioprod Bioref 11(2):344–362. https://doi.org/10.1002/bbb.1746
Article
CAS
Google Scholar
Kargbo H, Harris JS, Phan AN (2021) “Drop-in” fuel production from biomass: critical review on techno-economic feasibility and sustainability. Renew Sust Energ Rev 135:110168. https://doi.org/10.1016/j.rser.2020.110168
Article
CAS
Google Scholar
Keasling J, Garcia Martin H, Lee TS, Mukhopadhyay A, Singer SW, Sundstrom E (2021) Microbial production of advanced biofuels. Nat Rev Microbiol 19(11):701–715. https://doi.org/10.1038/s41579-021-00577-w
Article
CAS
PubMed
Google Scholar
Khan S, Das P, Abdul Quadir M, Thaher MI, Mahata C, Sayadi S, Al-Jabri H (2023) Microalgal feedstock for biofuel production: recent advances, challenges, and future perspective. Fermentation 9(3):281. https://doi.org/10.3390/fermentation9030281
Article
CAS
Google Scholar
Kirby J, Geiselman GM, Yaegashi J, Kim J, Zhuang X, Tran-Gyamfi MB, Prahl J-P, Sundstrom ER, Gao Y, Munoz N, Burnum-Johnson KE, Benites VT, Baidoo EEK, Fuhrmann A, Seibel K, Webb-Robertson B-JM, Zucker J, Nicora CD, Tanjore D, Magnuson JK, Skerker JM, Gladden JM (2021) Further engineering of R. Toruloides for the production of terpenes from lignocellulosic biomass. Biotechnol Biofuels 14(1):101. https://doi.org/10.1186/s13068-021-01950-w
Article
CAS
PubMed
PubMed Central
Google Scholar
Kocaturk E, Salan T, Ozcelik O, Alma MH, Candan Z (2023) Recent advances in lignin-based biofuel production. Energies 16(8):3382. https://doi.org/10.3390/en16083382
Article
CAS
Google Scholar
Koller M (2023) Biotechnological approaches to generate biogenic solvents and energy carriers from renewable resources. EuroBiotech J 7(2):96–120. https://doi.org/10.2478/ebtj-2023-0007
Article
Google Scholar
Kolosz BW, Luo Y, Xu B, Maroto-Valer MM, Andresen JM (2020) Life cycle environmental analysis of ‘drop in’ alternative aviation fuels: a review. Sustain Energ Fuels 4(7):3229–3263. https://doi.org/10.1039/C9SE00788A
Article
CAS
Google Scholar
Kugele ASH, Sarkar B (2023) Reducing carbon emissions of a multi-stage smart production for biofuel towards sustainable development. Alexandria Engineering Journal 70(1):93–113. https://doi.org/10.1016/j.aej.2023.01.003
Lee SY (ed) (2017) Consequences of microbial interactions with hydrocarbons, oils, and lipids: production of fuels and chemicals. Springer International Publishing, Cham
Google Scholar
Li G, Zhang J, Li H, Hu R, Yao X, Liu Y, Zhou Y, Lyu T (2021) Towards high-quality biodiesel production from microalgae using original and anaerobically-digested livestock wastewater. Chemosphere 273:128578. https://doi.org/10.1016/j.chemosphere.2020.128578
Article
CAS
PubMed
Google Scholar
Li S, Rong L, Wang S, Liu S, Lu Z, Miao L, Zhao B, Zhang C, Xiao D, Pushpanathan K, Wong A, Yu A (2022) Enhanced limonene production by metabolically engineered Yarrowia lipolytica from cheap carbon sources. Chem Eng Sci 249:117342. https://doi.org/10.1016/j.ces.2021.117342
Article
CAS
Google Scholar
Liu K, Atiyeh HK, Stevenson BS, Tanner RS, Wilkins MR, Huhnke RL (2014) Mixed culture syngas fermentation and conversion of carboxylic acids into alcohols. Bioresour Technol 152:337–346. https://doi.org/10.1016/j.biortech.2013.11.015
Article
CAS
PubMed
Google Scholar
Liu Y, Zhang J, Li Q, Wang Z, Cui Z, Su T, Lu X, Qi Q, Hou J (2022) Engineering Yarrowia lipolytica for the sustainable production of β-farnesene from waste oil feedstock. Biotechnol Biofuels 15(1):101. https://doi.org/10.1186/s13068-022-02201-2
Article
CAS
Google Scholar
Mahmood Z, Singh L (2023) Rhodococcus opacus high-cell-density batch cultivation with a bagasse hydrolysate for possible triacylglycerol synthesis. Biomed Biotechnol Res J 7(2):209. https://doi.org/10.4103/bbrj.bbrj_55_23
Article
Google Scholar
Malode SJ, Prabhu KK, Mascarenhas RJ, Shetti NP, Aminabhavi TM (2021) Recent advances and viability in biofuel production. Energ Convers Manag: X 10:100070. https://doi.org/10.1016/j.ecmx.2020.100070
Article
CAS
Google Scholar
Martinez-Villarreal S, Breitenstein A, Nimmegeers P, Perez Saura P, Hai B, Asomaning J, Eslami AA, Billen P, Van Passel S, Bressler DC, Debecker DP, Remacle C, Richel A (2022) Drop-in biofuels production from microalgae to hydrocarbons: microalgal cultivation and harvesting, conversion pathways, economics and prospects for aviation. Biomass Bioenergy 165:106555. https://doi.org/10.1016/j.biombioe.2022.106555
Article
CAS
Google Scholar
Mondal S, Biswal D, Pal K, Rakshit S, Kumar Halder S, Mandavgane SA, Bera D, Hossain M, Chandra Mondal K (2022) Biodeinking of waste papers using combinatorial fungal enzymes and subsequent production of butanol from effluent. Bioresour Technol 353:127078. https://doi.org/10.1016/j.biortech.2022.127078
Article
CAS
PubMed
Google Scholar
Moon M, Park W-K, Lee SY, Hwang K-R, Lee S, Kim M-S, Kim B, Oh Y-K, Lee J-S (2022) Utilization of whole microalgal biomass for advanced biofuel and biorefinery applications. Renew Sust Energ Rev 160:112269. https://doi.org/10.1016/j.rser.2022.112269
Article
CAS
Google Scholar
Nair AS, Sivakumar N (2022) Enhanced production of biodiesel by Rhodosporidium toruloides using waste office paper hydrolysate as feedstock: optimization and characterization. Fuel 327:125174. https://doi.org/10.1016/j.fuel.2022.125174
Article
CAS
Google Scholar
Nair AS, Sivakumar N (2023) Biodiesel production by oleaginous bacteria Rhodococcus opacus PD630 using waste paper hydrolysate. Biomass Conv Bioref 13(17):15827–15836. https://doi.org/10.1007/s13399-021-02135-z
Article
CAS
Google Scholar
Nanda S, Golemi-Kotra D, McDermott JC, Dalai AK, Gökalp I, Kozinski JA (2017) Fermentative production of butanol: perspectives on synthetic biology. New Biotechnol 37:210–221. https://doi.org/10.1016/j.nbt.2017.02.006
Article
CAS
Google Scholar
Niglio S, Procentese A, Russo ME, Sannia G, Marzocchella A (2019) Investigation of enzymatic hydrolysis of coffee silverskin aimed at the production of butanol and succinic acid by fermentative processes. Bioenergy Res 12(2):312–324. https://doi.org/10.1007/s12155-019-09969-6
Article
CAS
Google Scholar
Oh Y-K, Hwang K-R, Kim C, Kim JR, Lee J-S (2018) Recent developments and key barriers to advanced biofuels: a short review. Bioresour Technol 257:320–333. https://doi.org/10.1016/j.biortech.2018.02.089
Article
CAS
PubMed
Google Scholar
Okoro V, Azimov U, Munoz J (2022) Recent advances in production of bioenergy carrying molecules, microbial fuels, and fuel design – a review. Fuel 316:123330. https://doi.org/10.1016/j.fuel.2022.123330
Article
CAS
Google Scholar
Ouadi M, Bashir MA, Speranza LG, Jahangiri H, Hornung A (2019) Food and Market Waste-A Pathway to Sustainable Fuels and Waste Valorization. Energy Fuels 33(10):9843–9850. https://doi.org/10.1021/acs.energyfuels.9b01650.
Pang Y, Zhao Y, Li S, Zhao Y, Li J, Hu Z, Zhang C, Xiao D, Yu A (2019) Engineering the oleaginous yeast Yarrowia lipolytica to produce limonene from waste cooking oil. Biotechnol Biofuels 12(1):241. https://doi.org/10.1186/s13068-019-1580-y
Article
CAS
PubMed
PubMed Central
Google Scholar
Park GW, Shin S, Kim SJ, Lee J-S, Moon M, Min K (2023) Rice straw-derived lipid production by HMF/furfural-tolerant oleaginous yeast generated by adaptive laboratory evolution. Bioresour Technol 367:128220. https://doi.org/10.1016/j.biortech.2022.128220
Article
CAS
PubMed
Google Scholar
Peng X, Jiang Y, Chen Z, Osman AI, Farghali M, Rooney DW, Yap P-S (2023) Recycling municipal, agricultural and industrial waste into energy, fertilizers, food and construction materials, and economic feasibility: a review. Environ Chem Lett 21(2):765–801. https://doi.org/10.1007/s10311-022-01551-5
Article
CAS
Google Scholar
Phillips J, Huhnke R, Atiyeh H (2017) Syngas fermentation: a microbial conversion process of gaseous substrates to various products. Fermentation 3(2):28. https://doi.org/10.3390/fermentation3020028
Article
CAS
Google Scholar
Pina JC, Bono JAM, AKD O, RDS R, Amorim DO (2015) Organic residues on rooting and yield of sugarcane in Typic Quartzipsamments soil. Rev Bras Eng Agríc Ambient 19(7):650–655. https://doi.org/10.1590/1807-1929/agriambi.v19n7p650-655
Article
Google Scholar
Rahimi Z, Anand A, Gautam S (2022) An overview on thermochemical conversion and potential evaluation of biofuels derived from agricultural wastes. Energy Nexus 7:100125. https://doi.org/10.1016/j.nexus.2022.100125
Article
CAS
Google Scholar
Rene ER, Veiga MC, Kennes C (2022) Recent trends in biogenic gas, waste and wastewater fermentation. Fermentation 8(8):347. https://doi.org/10.3390/fermentation8080347
Article
Google Scholar
Ro JW, Zhang Y, Kendall A (2023) Developing guidelines for waste designation of biofuel feedstocks in carbon footprints and life cycle assessment. Sustain Prod Consump 37:320–330. https://doi.org/10.1016/j.spc.2023.03.009
Article
Google Scholar
Rodriguez K, Pedroso M, Harris A, Garg S, Hine D, Köpke M, Schenk G, Marcellin E (2023) Gas fermentation for microbial sustainable aviation fuel production. Microbiol Aust 44(1):31–35. https://doi.org/10.1071/MA23008
Article
Google Scholar
Roy S, Biswas JK, Kumar S (2014) Nutrient removal from waste water by macrophytes—an eco-friendly approach to waste water treatment and management. Energ Environ Res 4(2):55. https://doi.org/10.5539/eer.v4n2p55
Article
Google Scholar
Ruiz-Ruiz P, Gómez-Borraz TL, Revah S, Morales M (2020) Methanotroph-microalgae co-culture for greenhouse gas mitigation: effect of initial biomass ratio and methane concentration. Chemosphere 259:127418. https://doi.org/10.1016/j.chemosphere.2020.127418
Article
CAS
PubMed
Google Scholar
Saba B, Bharathidasan AK, Ezeji TC, Cornish K (2023) Characterization and potential valorization of industrial food processing wastes. Sci Total Environ 868:161550. https://doi.org/10.1016/j.scitotenv.2023.161550
Article
CAS
PubMed
Google Scholar
Saini R, Osorio-Gonzalez CS, Brar SK, Kwong R (2021) A critical insight into the development, regulation and future prospects of biofuels in Canada. Bioengineered 12(2):9847–9859. https://doi.org/10.1080/21655979.2021.1996017
Article
PubMed
PubMed Central
Google Scholar
Saini R, Osorio-Gonzalez CS, Hegde K, Kaur Brar S, Vezina P (2022) A co-fermentation strategy with wood hydrolysate and crude glycerol to enhance the lipid accumulation in Rhodosporidium toruloides-1588. Bioresour Technol 364:127821. https://doi.org/10.1016/j.biortech.2022.127821
Article
CAS
PubMed
Google Scholar
Salihu A, Alam MZ, Abdul Karim MI, Salleh HM (2012) Lipase production: An insight in the utilization of renewable agricultural residues. Resour Conserv Recycl 58:36–44. https://doi.org/10.1016/j.resconrec.2011.10.007
Article
Google Scholar
Scarlat N, Fahl F, Dallemand J-F (2019) Status and opportunities for energy recovery from municipal solid waste in Europe. Waste Biomass Valor 10(9):2425–2444. https://doi.org/10.1007/s12649-018-0297-7
Article
Google Scholar
Schubert T (2020) Production routes of advanced renewable C1 to C4 alcohols as biofuel components—a review. Biofuels Bioprod Biorefin 14(4):845–878. https://doi.org/10.1002/bbb.2109
Article
CAS
Google Scholar
Selvaggi R, Valenti F (2021) Assessment of fruit and vegetable residues suitable for renewable energy production: GIS-based model for developing new frontiers within the context of circular economy. ASI 4(1):10. https://doi.org/10.3390/asi4010010
Article
Google Scholar
Singh S, Pandey D, Saravanabhupathy S, Daverey A, Dutta K, Arunachalam K (2022) Liquid wastes as a renewable feedstock for yeast biodiesel production: opportunities and challenges. Environ Res 207:112100. https://doi.org/10.1016/j.envres.2021.112100
Article
CAS
PubMed
Google Scholar
Taptich MN, Scown CD, Piscopo K, Horvath A (2018) Drop-in biofuels offer strategies for meeting California’s 2030 climate mandate. Environ Res Lett 13(9):094018. https://doi.org/10.1088/1748-9326/aadcb2
Article
CAS
Google Scholar
Thanigaivel S, Vickram S, Dey N, Gulothungan G, Subbaiya R, Govarthanan M, Karmegam N, Kim W (2022) The urge of algal biomass-based fuels for environmental sustainability against a steady tide of biofuel conflict analysis: is third-generation algal biorefinery a boon? Fuel 317:123494. https://doi.org/10.1016/j.fuel.2022.123494
Article
CAS
Google Scholar
Tsai T-Y, Lo Y-C, Dong C-D, Nagarajan D, Chang J-S, Lee D-J (2020) Biobutanol production from lignocellulosic biomass using immobilized Clostridium acetobutylicum. Appl Energy 277:115531. https://doi.org/10.1016/j.apenergy.2020.115531
Article
CAS
Google Scholar
Tuhanioglu A, Hamamci H, Alpas H, Cekmecelioglu D (2022) Valorization of apple pomace via single cell oil production using oleaginous yeast Rhodosporidium toruloides. Waste Biomass Valor 14(3):765–779. https://doi.org/10.1007/s12649-022-01884-w
Article
CAS
Google Scholar
Usmani Z, Sharma M, Awasthi AK, Sivakumar N, Lukk T, Pecoraro L, Thakur VK, Roberts D, Newbold J, Gupta VK (2021) Bioprocessing of waste biomass for sustainable product development and minimizing environmental impact. Bioresour Technol 322:124548. https://doi.org/10.1016/j.biortech.2020.124548
Article
CAS
PubMed
Google Scholar
van der Ha D, Nachtergaele L, Kerckhof F-M, Rameiyanti D, Bossier P, Verstraete W, Boon N (2012) Conversion of biogas to bioproducts by algae and methane oxidizing bacteria. Environ Sci Technol 46(24):13425–13431. https://doi.org/10.1021/es303929s
Article
CAS
PubMed
Google Scholar
van Dyk S, Su J, Mcmillan JD, Saddler J (2019) Potential synergies of drop-in biofuel production with further co-processing at oil refineries. Biofuels Bioprod Biorefin 13(3):760–775. https://doi.org/10.1002/bbb.1974
Article
CAS
Google Scholar
Vural Gursel I, Elbersen B, Meesters KPH, van Leeuwen M (2022) Defining circular economy principles for biobased products. Sustain For 14(19):12780. https://doi.org/10.3390/su141912780
Article
Google Scholar
Walls LE, Rios-Solis L (2020) Sustainable production of microbial isoprenoid derived advanced biojet fuels using different generation feedstocks: a review. Front Bioeng Biotechnol 8:599560. https://doi.org/10.3389/fbioe.2020.599560
Article
PubMed
PubMed Central
Google Scholar
Wang K, Tester JW (2023) Sustainable management of unavoidable biomass wastes. Green Energy Resour 1(1):100005. https://doi.org/10.1016/j.gerr.2023.100005
Article
Google Scholar
Wang S, Wang Z, Wang Y, Nie Q, Yi X, Ge W, Yang J, Xian M (2017) Production of isoprene, one of the high-density fuel precursors, from peanut hull using the high-efficient lignin-removal pretreatment method. Biotechnol Biofuels 10(1):297. https://doi.org/10.1186/s13068-017-0988-5
Article
CAS
PubMed
PubMed Central
Google Scholar
Whalen J, Xu CC, Shen F, Kumar A, Eklund M, Yan J (2017) Sustainable biofuel production from forestry, agricultural and waste biomass feedstocks. Appl Energy 198:281–283. https://doi.org/10.1016/j.apenergy.2017.05.079
Article
Google Scholar
Xiong X, Zhang W, Ha X, Li N, Chen S, Xing H, Yang J (2023) The preparation processes and influencing factors of biofuel production from kitchen waste. Fermentation 9(3):247. https://doi.org/10.3390/fermentation9030247
Article
CAS
Google Scholar
Yan J, Liang L, He Q, Li C, Xu F, Sun J, Goh E, Konda NVSNM, Beller HR, Simmons BA, Pray TR, Thompson VS, Singh S, Sun N (2019) Methyl ketones from municipal solid waste blends by one-pot ionic-liquid pretreatment, saccharification, and fermentation. ChemSusChem 12(18):4313–4322. https://doi.org/10.1002/cssc.201901084
Article
CAS
PubMed
Google Scholar
Yazdanparast R, Jolai F, Pishvaee MS, Keramati A (2022) A resilient drop-in biofuel supply chain integrated with existing petroleum infrastructure: toward more sustainable transport fuel solutions. Renew Energy 184:799–819. https://doi.org/10.1016/j.renene.2021.11.081
Article
Google Scholar
Yuzawa S, Mirsiaghi M, Jocic R, Fujii T, Masson F, Benites VT, Baidoo EEK, Sundstrom E, Tanjore D, Pray TR, George A, Davis RW, Gladden JM, Simmons BA, Katz L, Keasling JD (2018) Short-chain ketone production by engineered polyketide synthases in Streptomyces albus. Nat Commun 9(1):4569. https://doi.org/10.1038/s41467-018-07040-0
Article
CAS
PubMed
PubMed Central
Google Scholar
Zargar A, Bailey CB, Haushalter RW, Eiben CB, Katz L, Keasling JD (2017) Leveraging microbial biosynthetic pathways for the generation of ‘drop-in’ biofuels. Curr Opin Biotechnol 45:156–163. https://doi.org/10.1016/j.copbio.2017.03.004
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao Y, Zhu K, Li J, Zhao Y, Li S, Zhang C, Xiao D, Yu A (2021) High-efficiency production of bisabolene from waste cooking oil by metabolically engineered Yarrowia lipolytica. Microb Biotechnol 14(6):2497–2513. https://doi.org/10.1111/1751-7915.13768
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu P, Abdelaziz OY, Hulteberg CP, Riisager A (2020) New synthetic approaches to biofuels from lignocellulosic biomass. Curr Opin Green Sustain Chem 21:16–21. https://doi.org/10.1016/j.cogsc.2019.08.005
Article
CAS
Google Scholar
Zieliński M, Dębowski M, Kazimierowicz J, Świca I (2023) Microalgal carbon dioxide (CO2) capture and utilization from the European Union perspective. Energies 16(3):1446. https://doi.org/10.3390/en16031446
Article
CAS
Google Scholar