Mitchell TM. Machine learning. New York: McGraw-Hill; 1997.
Google Scholar
Alpaydin E. Introduction to machine learning. 3rd ed. Cambridge, MA: The MIT Press; 2014.
Google Scholar
Bishop CM. Pattern recognition and machine learning. New York: Springer; 2006.
Google Scholar
Apolloni B. Machine learning and robot perception. Berlin: Springer; 2005.
Book
Google Scholar
Ao S-I, Rieger BB, Amouzegar MA. Machine learning and systems engineering. Dordrecht/New York: Springer; 2010.
Book
Google Scholar
Györfi L, Ottucsák G, Walk H. Machine learning for financial engineering. Singapore/London: World Scientific; 2012.
Google Scholar
Gong Y, Xu W. Machine learning for multimedia content analysis. New York/London: Springer; 2007.
Google Scholar
Yu J, Tao D. Modern machine learning techniques and their applications in cartoon animation research. 1st ed. Hoboken: Wiley; 2013.
Book
Google Scholar
Fielding A. Machine learning methods for ecological applications. Boston: Kluwer Academic Publishers; 1999.
Book
Google Scholar
Mitra S. Introduction to machine learning and bioinformatics. Boca Raton: CRC Press; 2008.
Google Scholar
Yang ZR. Machine learning approaches to bioinformatics. Hackensack: World Scientific; 2010.
Book
Google Scholar
Cleophas TJ. Machine learning in medicine. New York: Springer; 2013.
Book
Google Scholar
Malley JD, Malley KG, Pajevic S. Statistical learning for biomedical data. Cambridge: Cambridge University Press; 2011.
Book
Google Scholar
Ifrah G. The universal history of computing: from the abacus to the quantum computer. New York: John Wiley; 2001.
Google Scholar
Samuel AL. Some studies in machine learning using the game of checkers. IBM: J Res Dev. 1959;3:210–29.
Article
Google Scholar
Rosenblatt F. The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev. 1958;65:386–408.
Article
CAS
PubMed
Google Scholar
Minsky ML, Papert S. Perceptrons; an introduction to computational geometry. Cambridge, MA: MIT Press; 1969.
Google Scholar
Werbos PJ. Beyond regression: new tools for prediction and analysis in the behavioral sciences; PhD thesis, Harvard University, 1974.
Google Scholar
Quinlan JR. Induction of decision trees. Mach Learn. 1986;1:81–106.
Google Scholar
Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995;20:273–97.
Google Scholar
Schapire RE. A brief introduction to boosting. In: Proceedings of the 16th international joint conference on artificial intelligence, vol. 2. Stockholm: Morgan Kaufmann Publishers Inc; 1999. p. 1401–6.
Google Scholar
Breiman L. Random forests. Mach Learn. 2001;45:5–32.
Article
Google Scholar
Hinton GE. Learning multiple layers of representation. Trends Cogn Sci. 2007;11:428–34.
Article
PubMed
Google Scholar
Bengio Y, Courville A, Vincent P. Representation learning: a review and new perspectives. IEEE Trans Pattern Anal Mach Intell. 2013;35:1798–828.
Article
PubMed
Google Scholar
Cherkassky VS, Mulier F. Learning from data: concepts, theory, and methods. 2nd ed. Hoboken: IEEE Press/Wiley-Interscience; 2007.
Book
Google Scholar
Kargupta H. Next generation of data mining. Boca Raton: CRC Press; 2009.
Google Scholar
Vapnik VN. Statistical learning theory. New York: Wiley; 1998.
Google Scholar
Mitchell TM. The need for biases in learning generalizations. New Brunswick: Rutgers University; 1980.
Google Scholar
Sutton RS, Barto AG. Reinforcement learning: an introduction. Cambridge, MA: MIT Press; 1998.
Google Scholar
Hebb DO. The organization of behavior; a neuropsychological theory. New York: Wiley; 1949.
Google Scholar
El-Naqa I, Yang Y, Wernick MN, Galatsanos NP, Nishikawa RM. A support vector machine approach for detection of microcalcifications. IEEE Trans Med Imaging. 2002;21:1552–63.
Article
PubMed
Google Scholar
Gurcan MN, Chan HP, Sahiner B, Hadjiiski L, Petrick N, Helvie MA. Optimal neural network architecture selection: improvement in computerized detection of microcalcifications. Acad Radiol. 2002;9:420–9.
Article
PubMed
Google Scholar
El-Naqa I, Yang Y, Galatsanos NP, Nishikawa RM, Wernick MN. A similarity learning approach to content-based image retrieval: application to digital mammography. IEEE Trans Med Imaging. 2004;23:1233–44.
Article
PubMed
Google Scholar
Gulliford SL, Webb S, Rowbottom CG, Corne DW, Dearnaley DP. Use of artificial neural networks to predict biological outcomes for patients receiving radical radiotherapy of the prostate. Radiother Oncol. 2004;71:3–12.
Article
PubMed
Google Scholar
Munley MT, Lo JY, Sibley GS, Bentel GC, Anscher MS, Marks LB. A neural network to predict symptomatic lung injury. Phys Med Biol. 1999;44:2241–9.
Article
CAS
PubMed
Google Scholar
Su M, Miften M, Whiddon C, Sun X, Light K, Marks L. An artificial neural network for predicting the incidence of radiation pneumonitis. Med Phys. 2005;32:318–25.
Article
PubMed
Google Scholar
Tweedie R, Mengersen K, Eccleston J. Garbage in, garbage out: can statisticians quantify the effects of poor data? Chance. 1994;7:20–7.
Article
Google Scholar