Skip to main content
Log in

The Broken Past: Fractals in Archaeology

  • Published:
Journal of Archaeological Method and Theory Aims and scope Submit manuscript

Abstract

Many archaeological patterns are fractal. Fractal analysis, therefore, has much to contribute to archaeology. This article offers an introduction to fractal analysis for archaeologists. We explain what fractals are, describe the essential methods of fractal analysis, and present archaeological examples. Some examples have been published previously, while others are presented here for the first time. We also explain the connection between fractal geometry and nonlinear dynamical systems. Fractals are the geometry of complex nonlinear systems. Therefore, fractal analysis is an indispensable method in our efforts to understand nonlinearities in past cultural dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Adams, R. E. W. (1971). The Ceramics of Altar de Sacrificios, Papers of the Peabody Museum of Archaeology and Ethnology, Harvard University, Cambridge, MA.

    Google Scholar 

  • Adams, R. E. W. (1977). Comments on the glyphic texts of the “Altar Vase” In Hammond, N. (ed.), Social Process in Maya Prehistory: Studies in Honor of Sir Eric Thompson, Academic Press, London, pp. 409–420.

    Google Scholar 

  • Adams, R. McC. (1981). Heartland of Cities: Surveys of Ancient Settlement and Land Use on the Central Floodplain of the Euphrates, The University of Chicago Press, Chicago.

    Google Scholar 

  • Aks, D. J., and Sprott, J. C. (1996). Quantifying aesthetic preference for chaotic patterns. Journal of Empirical Studies of the Arts 14(1): 1–16.

    Google Scholar 

  • Allain, C., and Cloitre, M. (1991). Characterizing the Lacunarity of Random and Deterministic Fractal Sets. Physical Review A 44(6): 3552–3558.

    Google Scholar 

  • Ammerman, A. J., and Cavalli-Sforza, L. L. (1979). The Wave of Advance Model for the Spread of Agriculture in Europe. In Renfrew, C., and Cooke, K. L. (eds.), Transformations: Mathematical Approaches to Culture Change, Academic Press, New York, pp. 275–293

    Google Scholar 

  • Arlinghaus, S. L. (1985). Fractals take a central place. Geografiska Annaler 67 B(2): 83–88.

    Google Scholar 

  • Arlinghaus, S. L. (1993). Central Place Fractals: Theoretical geography in an urban setting. In Siu-Ngan Lam N., and L. DeCola, (eds.), Fractals in Geography, Engelwood Cliffs, NJ: Prentice Hall, pp. 213–227.

    Google Scholar 

  • Baas, A. C. W. (2002). Chaos, fractals, and self-organization in coastal geomorphology: Simulating dune landscapes in vegetated environments. Geomorphology 48: 309–328.

    Google Scholar 

  • Bak, P. (1996). How Nature Works: The Science of Self-Organized Criticality. Springer-Verlag, New York.

    Google Scholar 

  • Bak, P., Tang, C., and Wiesenfeld, K. (1987). Self-organized criticality: An explanation of 1/f noise. Physical Review Letters 59(4): 381–384.

    Google Scholar 

  • Bak, P., Tang, C., and Wiesenfeld, K. (1988). Self-organized criticality. Physical Review A 38(1): 364–374.

    Google Scholar 

  • Barton, C. C. (1995). Fractal analysis of scaling and spatial clustering of fractures. In Barton, C. C., and LaPointe, P. R. (eds.), Fractals in the Earth Sciences, Plenum Press, New York, pp. 141–178.

    Google Scholar 

  • Baryshev, Y. V., Sylos Labini, F., Montuori, M., Pietronero, L., and Teerikorpi, P. (1998). On the fractal structure of galaxy distribution and its implications for cosmology. Fractals 6(3): 231–243.

    Google Scholar 

  • Batty, M. (1991). Generating urban forms from diffusive growth. Environment and Planning A 23: 511–544.

    Google Scholar 

  • Batty, M., Fotheringham, A. S., and Longley, P. (1993). Fractal geometry and urban morphology. In Lam, N., and De Cola, L. (eds.), Fractals in Geography, Prentice Hall, Englewood Cliffs, NJ, pp. 228–246.

    Google Scholar 

  • Batty, M., and Kim, K. (1992). Form follows function: Reformulating urban population density functions. Urban Studies 29(7): 1043–1070.

    Google Scholar 

  • Batty, M., and Longley, P. A. (1986). The fractal simulation of urban structure. Environment and Planning A 18: 1143–1179.

    Google Scholar 

  • Batty, M., and Longley, P. (1994). Fractal Cities, Academic Press, New York.

    Google Scholar 

  • Batty, M., Longley, P. A., and Fotheringham, S. (1989). Urban growth and form: Scaling, fractal geometry, and diffusion-limited aggregation. Environment and Planning A 21: 1447–1472.

    Google Scholar 

  • Batty, M., and Xie, Y. (1996). Preliminary evidence for a theory of the fractal city. Environment and Planning A 28: 1745–1762.

    Google Scholar 

  • Beauchamp, E. K., and Purdy, B. A. (1986). Decrease in fracture toughness of chert by heat treatment. Journal of Materials Science 21: 1963–1966.

    Google Scholar 

  • Behm, J. A. (1983). Flake concentrations: Distinguishing between flintworking activity areas and secondary deposits. Lithic Technology 12: 9–16.

    Google Scholar 

  • ben-Avraham, D., and Havlin, S. (2000). Diffusion and Reactions in Fractals and Disordered Systems. Cambridge University Press, Cambridge.

    Google Scholar 

  • Benedict, R. (1934). Patterns of Culture, Houghton Mifflin Company, Boston.

    Google Scholar 

  • Bentley, R. A., and Maschner, H. D. G. (2001). Stylistic change as a self-organized critical phenomenon: An archaeological study in complexity. Journal of Archaeological Method and Theory 8(1): 35–66.

    Google Scholar 

  • Bentley, R. A. (2003). An introduction to complex systems. In Bentley, R. A., and Maschner, H. D. G. (eds.), Complex Systems and Archaeology: Empirical and Theoretical Applications, Foundations of Archaeological Inquiry. University of Utah Press, Salt Lake City, pp. 9–24.

    Google Scholar 

  • Bentley, R. A., and Maschner, H. D. G. (2003). Punctuated agency and change in archaeology. In Bentley, R. A., and Maschner, H. D. G. (eds.), Complex Systems and Archaeology: Empirical and Theoretical Applications, Foundations of Archaeological Inquiry. University of Utah Press, Salt Lake City, pp. 75–77.

    Google Scholar 

  • Bentley, R. A., and Maschner, H. D. G. (2003). Preface: considering complexity theory in archaeology. In Bentley, R. A., and Maschner, H. D. G. (eds.), Complex Systems and Archaeology: Empirical and Theoretical Applications, Foundations of Archaeological Inquiry. University of Utah Press, Salt Lake City, pp. 1–9.

    Google Scholar 

  • Bettinger, R. L. (1987). Archaeological applications to hunter-gatherers. Annual Review of Anthropology 16: 121–142.

    Google Scholar 

  • Binford, L. R. (1978). Dimensional analysis of behavior and site structure: Learning from an Eskimo hunting stand. American Antiquity 43(3): 330–361.

    Google Scholar 

  • Binford, L. R. (1981). Behavioral archaeology and the “Pompeii premise.” Journal of Anthropological Research 37(3): 195–208.

    Google Scholar 

  • Blankholm, H. P. (1991). Intrasite Spatial Analysis in Theory and Practice. Aarhus University Press, Århus.

    Google Scholar 

  • Borodich, F. M. (1997). Some fractal models of fracture. Journal of Mechanics and Physics of Solids 45(2): 239–259.

    Google Scholar 

  • Bovill, C. (1996). Fractal Geometry in Architecture and Design. Birkhauser, Boston.

    Google Scholar 

  • Boyer, D., Miramontes, O., Ramos-Fernández, G., Mateos, J. L., and Cocho, G. (2003). Modeling the Behavior of Social Monkeys. 〈ArXiv.org:cond-mat/0311252 v1 11 Nov 2003〉

  • Brown, C. T. (1999). Mayapán and Ancient Maya Social Organization, Ph.D. Dissertation, Department of Anthropology, Tulane University, New Orleans.

    Google Scholar 

  • Brown, C. T. (2001). The fractal dimensions of lithic reduction. Journal of Archaeological Science 28(6): 619–631.

    Google Scholar 

  • Brown, C. T., and Liebovitch, L. S. (2004). Lévy Flights of Human Foragers. In preparation.

  • Brown, C. T., and Witschey, W. R. T. (2003). The fractal geometry of ancient maya settlement. Journal of Archaeological Science 30: 1619–1632.

    Google Scholar 

  • Brown, C. (1995a). Chaos and Catastrophe Theory. Quantitative Applications in the Social Sciences No. 107, Sage Publications, Newberry Park (CA).

    Google Scholar 

  • Brown, C. (1995b). Serpents in the Sand: Essays on the Nonlinear Nature of Politics and Human Destiny, University of Michigan Press, Ann Arbor.

    Google Scholar 

  • Brown, S. R. (1995). Measuring the dimension of self-affine fractals: Examples of rough surfaces, In Barton, C. C., and La Pointe, P. R. (eds.), Fractals in the Earth Sciences, Plenum Press, New York, pp. 77–87.

    Google Scholar 

  • Brunk, G. G. (2002). Why do societies collapse? A theory based on self-organized criticality. Journal of Theoretical Politics 14(2): 195–230.

    Google Scholar 

  • Burrough, P. A. (1981). Fractal Dimensions of Landscapes and Other Environmental Data. Nature 377: 574–577.

    Google Scholar 

  • Carneiro, R. L. (1970). A theory of the origin of the state. Science 169: 733–738.

    Google Scholar 

  • Carvalho, R., and Pen, A. (2003). Scaling and Universality in the Micro-structure of Urban Space. http://www.arXiv.org:cond-mat/0305164v2 25 Sep 2003.

  • Castrejón-Pita, J. R., Castrejón-Pita, A. A., Sarmiento-Galán, A., and Castejón-García, R. (2003). Nasca lines: A mysetry wrapped in an enigma. Chaos 13(3): 836–838.

    Google Scholar 

  • Cavanagh, W. G., and Laxton, R. R. (1994). The fractal dimension, rank-size, and the interpretation of archaeological survey data. In Johnson, I. (ed.), Methods in the Mountains: Proceedings of UISPP Commission IV Meeting, Mount Victoria, Australia, August 1993, Sydney University Archaeological Methods Series, 2, pp. 61–64.

  • Chaisson, E. J. (2001). Cosmic Evolution: The Rise of Complexity in Nature, Harvard University Press, Cambridge.

    Google Scholar 

  • Chapman, J. (2000). Fragmentation in Archaeology, Routledge, London.

    Google Scholar 

  • Clark, J. E. (1991a). Modern lacandon lithic technology and blade workshops. In Hester, T. R., and Shafer, H. J. (eds.), Maya Stone Tools: Selected Papers from the Second Maya Lithic Conference, Prehistory Press, Monographs in World Archaeology No. 1, Madison, pp. 251–266.

    Google Scholar 

  • Clark, J. E. (1991b). Flintknapping and debitage disposal among the lacandon maya of chiapas, Mexico. In Staski, E. and Sutro, L. (eds.), The Ethnoarchaeology of Refuse Disposal, Arizona State University Anthropological Research Papers No. 42, Tempe, pp. 63–78.

    Google Scholar 

  • Clarke, K. C. (1986). Computation of the fractal dimension of topographic surfaces using the triangular prism surface area method. Computers and Geosciences 12(5): 713–722.

    Google Scholar 

  • Condit, R., Ashton, P. S., Baker, P., Bunyavejchewin, S., Gunatilleke, S., Gunatilleke, N., Hubbell, S. P., Foster, R. B., Itoh, A., LaFrankie, J. V., Lee, H. S., Losos, E., Manokaran, N., Sukumar, R., and Yamakura, T. (2000). Spatial patterns in the distribution of tropical tree species. Science 288: 1414–1418.

    Article  CAS  PubMed  Google Scholar 

  • Cooper, B. E., Chenoweth, D. L., and Selvage, J. E. (1994). Fractal error for detecting man-made features in aerial images. Electronics Letters 30(7): 554–555.

    Google Scholar 

  • Coutinho, K., Adhikari, S. K., and Gomes, M. A. F. (1993). Dynamic Scaling in Fragmentation. Journal of Applied Physics 74(12): 7577–7587.

    Google Scholar 

  • da Luz, M. G. E., Buldyrev, S. V., Havlin, S., Raposo, E. P., Stanley, H. E., and Viswanathan, G. M. (2001). Improvements in the Statistical Approach to Random Lévy Flight Searches. Physica A 295: 89–92.

    Google Scholar 

  • David, N. (1972). On the life span of pottery, type frequencies, and archaeological inference. American Antiquity 37: 141–142.

    Google Scholar 

  • Deadman, P., Brown, R. D., and Gimblett, H. R. (1993). Modelling rural residential settlement patterns with cellular automata. Journal of Environmental Management 37: 147–160.

    Google Scholar 

  • De Cola, L., and Lam, N. S-N. (1993). Introduction to fractals in geography. In Lam, N. S-N. and De Cola, L. (eds.), Fractals in Geography. Engelwood Cliffs, NJ: Prentice Hall, pp. 3–22.

    Google Scholar 

  • Devaney, R. L. (1990). Chaos, Fractals, and Dynamics: Computer Experiments in Mathematics. Addison-Wesley, Menlo Park, California.

    Google Scholar 

  • Dodds, P. S., and Rothman, D. H. (2000). Scaling, universality, and geomorphology. Annual Review of Earth and Planetary Science 28: 571–610.

    Google Scholar 

  • Ebert, J. I. (1992). Distributional Archaeology, University of New Mexico Press, Albuquerque.

    Google Scholar 

  • Eglash, R. (1999). African Fractals: Modern Computing and Indigenous Design. Rutgers University Press, New Brunswick, NJ.

    Google Scholar 

  • Eglash, R., Diatta, C. S., and Badiane, N. (1994). Fractal structure in Jola material culture. Ekistics 368/369: 367–371.

    Google Scholar 

  • Espinal, F., Huntsberger, T., Jawerth, B. D., and Kubota, T. (1998). Wavelet-based fractal signature analysis for automatic target recognition. Optical Engineering 37(1): 166–174.

    Google Scholar 

  • Gefen, Y., Aharony, A., and Mandelbrot, B. B. (1984). Phase Transitions on Fractals: III. Infinitely Ramified Lattices. Journal of Physics A 17: 1277–1289.

    Google Scholar 

  • Gomez, B., Page, M., Bak, P., and Trustrum, N. (2002). Self-organized criticality in layered, lacustrine sediments formed by landsliding. Geology 30(6): 519–522.

    Google Scholar 

  • Hammond, N. (1974). The distribution of late classic Maya major ceremonial centres in the central area. In Hammond, N. (ed.), Mesoamerican Archaeology: New Approaches. Austin: University of Texas Press, pp. 313–334.

    Google Scholar 

  • Hastings, H. M., and Sugihara, G. (1993). Fractals: A User’s Guide for the Natural Sciences, Oxford University Press, Oxford.

    Google Scholar 

  • Healan, D. M. (1995). Identifying lithic reduction loci with size-graded macrodebitage: A multivariate approach. American Antiquity 60(4): 689–699.

    Google Scholar 

  • Hietala, Harold J. (1984). Intrasite Spatial Analysis in Archaeology. New York: Cambridge University Press.

    Google Scholar 

  • Hirata, T. (1989). Fractal dimension of fault systems in japan: fractal structure in rock fracture geometry at various scales, In Scholz, C. H., and Mandelbrot, B. B. (eds.), Fractals in Geophysics, Birkhauser Verlag, Basel, pp. 157–170. (Reprinted from Pure and Applied Geophysics Vol. 131, No. 1/2).

    Google Scholar 

  • Hodder, I. (1979). Economic and social stress and material culture patterning. American Antiquity 44: 446–454.

    Google Scholar 

  • Hodder, I. (1982). Symbols in Action: Ethnoarchaeological Studies of Material Culture, Cambridge University Press, Cambridge.

    Google Scholar 

  • Hodder, I., and Orton, C. (1976). Spatial Analysis in Archaeology, Cambridge University Press, Cambridge.

    Google Scholar 

  • Inomata, T., and Aoyama, K. (1996). Central-place analyses in the La Entrada region, Honduras: Implications for understanding the Classic Maya political and economic systems. Latin American Antiquity 7(4): 291–312.

    Google Scholar 

  • Johnson, G. A. (1980). Rank-size convexity and system integration: A view from archaeology. Economic Geography 56(3): 234–247.

    Google Scholar 

  • Jones, M. (1952). Map of the Ruins of Mayapan, Yucatan, Mexico, Current Reports 1, Carnegie Institution of Washington, Department of Archaeology, Cambridge, Mass.

    Google Scholar 

  • Kelly, R. L. (2000). Elements of a behavioral ecological paradigm for the study of prehistoric hunter-gatherers. In Schiffer, M. B. (ed.), Social Theory in Archaeology, University of Utah Press, Salt Lake City, pp. 63–78.

    Google Scholar 

  • Kennedy, S. K., and Lin, W. (1986). Fract–A FORTRAN subroutine to calculate the variables necessary to determine the fractal dimension of closed forms. Computers and Geosciences 12: 705–712.

    Google Scholar 

  • Kennedy, S. K., and Lin, W. (1988) A fractal technique for the classification of projectile point shapes. Geoarchaeology 3(4): 297–301.

    Google Scholar 

  • Kintigh, K. W. (1990). Intrasite spatial analysis: A commentary on major methods, In Voorrips, A. (ed.), Mathematics and Information Science in Archaeology: A Flexible Framework, Studies in Modern Archaeology 3. Holos, Bonn, pp. 165–200.

    Google Scholar 

  • Kintigh, K. W., and Ammerman, A. J. (1982). Heuristic approaches to spatial analysis in archaeology. American Antiquity 47(1): 31–63.

    Google Scholar 

  • Klinkenberg, B. (1992). Fractals and morphometric measures: Is there a relationship? In Snow, R. S., and Mayer, L. (eds.), Fractals in Geomorphology, special issue of Geomorphology 5: 5–20.

    Google Scholar 

  • Korvin, G. (1992). Fractal Models in the Earth Sciences, Elsevier, Amsterdam.

    Google Scholar 

  • Kowalewski, S. A. (1990). The evolution of complexity in the Valley of Oaxaca. Annual Review of Anthropology 19: 39–58.

    Google Scholar 

  • Kowalewski, S. A., Blanton, R. E., Feinman, G., and Finsten, L. (1983). Boundaries, scale, and internal organization. Journal of Anthropological Archaeology 2: 32–56.

    Google Scholar 

  • Laherrère, J., and Sornette, D. (1998). Stretched exponential distributions in nature and economy: “Fat tails” with characteristic scales. European Physical Journal B 2:525–539.

    Google Scholar 

  • Lake, M. W. (2000). MAGICAL computer simulation of mesolithic foraging. In Kohler, T. A., and Gumerman, G. J. (eds.), Dynamics in Human and Primate Societies: Agent-based Modeling of Social and Spatial Processes, Santa Fe Institute Studies in the Sciences of Complexity, Oxford University Press, Oxford, pp. 107–143.

    Google Scholar 

  • Laxton, R. R., and Cavanagh, W. G. (1995). The rank-size dimension and the history of site structure for survey data. Journal of Quantitative Anthropology 5: 327–358.

    Google Scholar 

  • Liebovitch, L. S. (1998). Fractals and Chaos Simplified for the Life Sciences, Oxford University Press, New York.

    Google Scholar 

  • Liebovitch, L. S., and Scheurle, D. (2000). Two Lessons from Fractals and Chaos, Complexity 5(4): 34–43.

    Google Scholar 

  • Liebovitch, L. S., and Todorov, A. T. (1996). Fractal dynamics of human gait: Stability of long-range correlations in stride interval fluctuations. Journal of Applied Physiology 80: 1446–1447.

    Google Scholar 

  • Liebovitch, L. S., and Toth, T. (1989). A fast algorithm to determine fractal dimensions by box counting. Physics Letters A 141(8,9): 386–390.

    Google Scholar 

  • Lin, B., and Yang, Z. R. (1986). A suggested lacunarity expression for Sierpinski carpets. Journal of Physics A: 19: L49–L52.

    Google Scholar 

  • Longley, P. A., Batty, M., and Sheperd, J. (1991). The size, shape and dimension of urban settlements. Transactions, Institute of British Geographers N.S. 16: 75–94.

    Google Scholar 

  • Makse, H. A., Havlin, S., and Stanley, H. E. (1995). Modelling urban growth patterns. Nature 377: 608–612.

    Google Scholar 

  • Mandelbrot, B. B. (1967). How long is the coast of britain? Statistical self-similarity and fractional dimension. Science 156: 636–638.

    Google Scholar 

  • Mandelbrot, B. B. (1975). Stochastic models of the earth’s relief, the shape and the fractal dimension of the coastlines, and the number-area rule for islands. Proceedings of the National Academy of Sciences, USA 72(10): 3825–3828.

    Google Scholar 

  • Mandelbrot, B. B. (1983). The Fractal Geometry of Nature. (Updated and augmented edition), W. H. Freeman and Company, New York.

    Google Scholar 

  • Maschner, H. D. G., and Bentley, R. A. (2003). The Power Law of Rank and Household on the North Pacific. In Bentley, R. A., and Maschner, H. D. G. (eds.), Complex Systems and Archaeology: Empirical and Theoretical Applications, Foundations of Archaeological Inquiry. University of Utah Press, Salt Lake City, pp. 47–60.

    Google Scholar 

  • McDowell, G. R., Bolton, M. D., and Robertson, D. (1996). The Fractal Crushing of Granular Materials. Journal of Mechanical Physics and Solids 44(12): 2079–2102.

    Google Scholar 

  • McGlade, J. (1995). Archaeology and the ecodynamics of human modified landscapes. Antiquity 69: 113–132.

    Google Scholar 

  • McGlade, J., and Van Der Leeuw, S. E. (1997). Introduction: Archaeology and non-linear dynamics: new approaches to long-term change. In van der Leeuw, S. E., and McGlade, J. (eds.) Time, Process, and Structured Transformation in Archaeology. One World Archaeology Volume 26. Routledge, London, pp. 1–31.

    Google Scholar 

  • Mecholsky, J. J., and Mackin, T. J. (1988). Fractal analysis of fracture in ocala chert. Journal of Materials Science Letters 7: 1145–1147.

    Google Scholar 

  • Miller, D. (1985). Artifacts as Categories: A Study of Ceramic Variability in Central India, Cambridge University Press, Cambridge.

    Google Scholar 

  • Mitina, O. V., and Abraham, F. D. (n.d.), The use of fractals for the study of the psychology of perception: Psychophysics and personality factors, a brief report. International Journal of Modern Physics C (in press).

  • Neil, G., and Curtis, K. M. (1997). Shape recognition using fractal geometry. Pattern Recognition 30(12): 1957–1969.

    Google Scholar 

  • Nicolas, G., and Prigogine, I. (1989). Exploring Complexity: An Introduction, W. H. Freeman and Company, New York.

    Google Scholar 

  • Nunes Amaral, L. A., Buldyrev, S. V., Havlin, S., Salinger, M. A., and Stanley, H. E. (1998). Power law scaling for a system of interacting units with complex internal structure. Physical Review Letters 80(7): 1385–1388.

    Google Scholar 

  • Oleschko, K., Brambila, R., Brambila, F., Parrot, J., and Lopez, P. (2000). Fractal analysis of Teotihuacan, Mexico. Journal of Archaeological Science. 27(11): 1007–1016.

    Google Scholar 

  • Orton, C. (2000). Sampling in Archaeology, Cambridge University Press, New York.

    Google Scholar 

  • Paynter, R. W. (1983). Expanding the scope of settlement analysis. In Moore, J. A. and Keene, A. S. (eds.), Archaeological Hammers and Theories. New York: Academic Press, pp. 233–275.

    Google Scholar 

  • Peitgen, H., Jürgens, H., and Saupe, D. (1992). Chaos and Fractals: New Frontiers of Science. Springer-Verlag, New York.

    Google Scholar 

  • Priebe, C. E., Solka, J. L., and Rogers, G. W. (1993). Discriminant analysis in aerial images using fractal based features. In Sadjadi, F. A. (ed.), Adaptive and Learning Systems II Proceedings SPIE 1962, pp. 196–208.

    Google Scholar 

  • Ramos-Fernández, G., Mateos, J. L., Miramontes, O., Cocho, G., Sarralde, H., and Ayala-Orozco, B. (2003). Lévy walk patterns in the foraging movements of spider monkeys (Ateles geoffroyi). Behavioral Ecology and Sociobiology 55(3): 223–230.

    Google Scholar 

  • Redner, S. (1990). Fragmentation. In Herrmann, H. J. and Roux, S. (eds.), Statistical models for the fracture of disordered media, New York: North-Holland, pp. 321–348.

    Google Scholar 

  • Richardson, L. F. (1961). The problem of continuity: An appendix to statistics of deadly quarrels. General Systems Yearbook 6: 139–187.

    Google Scholar 

  • Roberts, D. C., and Turcotte, D. L. (1998). Fractality and self-organized criticality of wars. Fractals 6(4): 351–357.

    Google Scholar 

  • Rodin, V., and Rodina, E. (2000). The fractal dimension of Tokyo’s streets. Fractals 8(4): 413–418.

    Google Scholar 

  • Rodriguez Alcalde, A. L., Alonso Jiménez, C., and Velázquez Cano, J. (1995). Fractales para la Arqueología: Un Nuevo Lenguaje. Trabajos de Prehistoria 52(1): 13–24.

    Google Scholar 

  • Rodríguez-Iturbe, I., and Rinaldo, A. (1997). Fractal River Basins: Chance and Self-Organization, Cambridge University Press, New York.

    Google Scholar 

  • Roering, J. J., Kirchner, J. W., Sklar, L. S., and Dietrich, W. E. (2001). Hillslope evolution by nonlinear creep and landsliding: An experimental study. Geology 29(2): 143–146.

    Google Scholar 

  • Sackett, J. R. (1990). Style and ethnicity in archaeology: The case for isochrestism. In Conkey, M., and Hastorf, C. (eds.), The Uses of Style in Archaeology, Cambridge University Press, Cambridge, pp. 32–43.

    Google Scholar 

  • Sammis, C. G., and Biegel, R. L. (1989). Fractals, Fault-gouge, and Friction. Pure and Applied Geophysics 131: 255–271.

    Google Scholar 

  • Sammis, C. G., and Steacy, S. J. (1995). Fractal fragmentation in crustal shear zones. In Barton, C. and La Pointe, P. R. (eds.), Fractals in the Earth Sciences, New York: Plenum Press, pp. 179–204.

    Google Scholar 

  • Sarraille, J. J., and Myers, L. S. (1994). FD3: A program for measuring fractal dimension. Educational and Psychological Measurement 54(1): 94–97.

    Google Scholar 

  • Schlesinger, M. F., Zaslavsky, G. M., and Klafter, J. (1993). Strange kinetics. Nature 363: 31–37.

    Google Scholar 

  • Schroeder, M. (1991). Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise, W. H. Freeman and Company, New York.

    Google Scholar 

  • Shennan, S. (2002). Archaeology and evolutionary ecology. World Archaeology 34(1): 1–5.

    Google Scholar 

  • Smith, E. A. (1983). Anthropological applications of optimal foraging theory: A critical review. Current Anthropology 24(5): 625–651.

    Google Scholar 

  • Smith, E. A., and Winterhalder, B. (eds.), (1992). Evolutionary Ecology and Human Behavior, Aldine de Gruyter, New York.

    Google Scholar 

  • Snow, R. S. (1989). Fractal sinuosity of stream channels. In Scholz, C. H., and Mandelbrot, B. B. (eds.), Fractals in Geophysics, Birkhauser Verlag, Basel, pp. 99–109.

    Google Scholar 

  • Solé, R. V., and Manrubia, S. C. (1995). Are rainforests self-organized in a critical state? Journal of Theoretical Biology 173: 31–40.

    Google Scholar 

  • Spehar, B., Clifford, C. W. G., Newell, B. R., and Taylor, R. P. (2003). Universal aesthetic of fractals. Computers and Graphics 27: 813–820.

    Google Scholar 

  • Steacy, S., and Sammis, C. G. (1991). An automaton for fractal patterns of fragmentation. Nature 353: 250–252.

    Google Scholar 

  • Steffens, W. (1999). Order from chaos [review of Benoit software]. Science 285(5431): 1228.

    Google Scholar 

  • Stein, J. K., and Linse, A. R. (eds.) (1993). Effects of Scale on Archaeological and Geoscientific Perspectives, Geological Society of America, Boulder.

    Google Scholar 

  • Stølum, H. (1996). River meandering as a self-organization process. Science 271: 1710–1713.

    Google Scholar 

  • Sylos Labini, F., Montuori, M., and Pietronero, L. (1998). Scale invariance of galaxy clustering. Physical Reports 293: 61–226.

    Google Scholar 

  • Taylor, R. P., Micolich, A. P., and Jonas, D. (1999). Fractal analysis of pollock’s drip paintings. Nature 399: 422.

    Google Scholar 

  • Taylor, R. P., Micolich, A. P., and Jonas, D. (2002). The construction of Jackson Pollock’s fractal drip paintings. Leonardo 35(2): 203–207.

    Google Scholar 

  • Turcotte, D. L. (1986). Fractals and fragmentation. Journal of Geophysical Research 91(B2): 1921–1926.

    Google Scholar 

  • Turcotte, D. L. (1997). Fractals and Chaos in Geology and Geophysics, 2nd edn, Cambridge University Press, Cambridge.

    Google Scholar 

  • Turcotte, D. L., and Huang, J. (1995). Fractal distributions in geology, scale invariance, and deterministic chaos. In Barton, C. C., and La Pointe, P. R. (eds.), Fractals in the Earth Sciences, Plenum Press, New York, pp. 1–40.

    Google Scholar 

  • Villemin, T., Angelier, J., and Sunwoo, C. (1995). Fractal distribution of fault length and offsets: Implications of brittle deformation evaluation—The Lorraine Coal Basin, In Barton, C. C., and La Pointe, P. R. (eds.), Fractals in the Earth Sciences, Plenum Press, New York, pp. 205–226.

    Google Scholar 

  • Viswanathan, G. M., Afanasyev, V., Buldyrev, S. V., Havlin, S., da Luz, M. G. E., Raposo, E. P., and Stanley, H. E. (2000). Lévy flights in random searches. Physica A 282: 1–12.

    Google Scholar 

  • Viswanathan, G. M., Afanasyev, V., Buldyrev, S. V., Havlin, S., da Luz, M. G. E., Raposo, E. P., and Stanley, H. E. (2001). Lévy flights search patterns of biological organisms. Physica A 295: 85–88.

    Google Scholar 

  • Viswanathan, G. M., Afanasyev, V., Buldyrev, S. V., Murphy, E. J., Prince, P. A., and Stanley, H. E., (1996). Lévy flight search patterns of wandering albatrosses. Nature 381: 413–415.

    Google Scholar 

  • Viswanathan, G. M., Buldyrev, S. V., Havlin, S., da Luz, M. G. E., Raposo, E. P., and Stanley, H. E. (1999). Optimizing the success of random searches. Nature 401: 911–914.

    Google Scholar 

  • Viswanathan, G. M., Bartumeus, F., Buldyrev, S. V., Catalan, J., Fulco, U. L., Havlin, S., da Luz, M. G. E., Lyra, M. L., Raposo, E. P., and Stanley, H. E. (2002). Lévy flight random searches in biological phenomena. Physica A 314: 208–213.

    Google Scholar 

  • Washburn, D. K. (1977). A Symmetry Analysis of Upper Gila Area Ceramic Design, Papers of the Peabody Museum of Archaeology and Ethnology, No. 68. Harvard University, Cambridge.

    Google Scholar 

  • Washburn, D. K. (1994). The property of symmetry and the concept of ethnic style. In Shennan, S. (ed.), Archaeological Approaches to Cultural Identity, Routledge, London and New York, pp. 157–173.

    Google Scholar 

  • Washburn, D. K. (1990). Style, Classification, and Ethnicity: Design Categories on Bakuba Raffia Cloth, Transactions of the American Philosophical Society, Vol. 80, Part 3, Philadelphia.

    Google Scholar 

  • Washburn, D. K., and Crowe, D. W. (1988). Symmetries of Culture: Theory and Practice of Plane Pattern Analysis, University of Washington Press, Seattle.

    Google Scholar 

  • Washburn, D. K., and Matson, R. G. (1985). Use of multidimensional scaling to display sensitivity of symmetry analysis of patterned design to spatial and chronological change: Examples from Anazasi prehistory. In Nelson, B. A. (ed.), Decoding Prehistoric Ceramics, Center for Archaeological Investigations, Southern Illinois University at Carbondale, SIU Press, Carbondale and Edwardsville, pp. 75–101.

    Google Scholar 

  • Whallon, R. (1984). Unconstrained clustering for the analysis of spatial distributions in archaeology. In Hietala, H. J. (ed.), Intrasite Spatial Analysis in Archaeology. Cambridge University Press, Cambridge, pp. 242–277.

    Google Scholar 

  • White, R., and Engelen, G. (1993). Cellular automata and fractal urban form: A cellular modelling approach to the evolution of urban land-use patterns. Environment and Planning A 25: 1175–1199.

    Google Scholar 

  • Wiessner, P. (1983). Style and social information in Kalahari San projectile points. American Antiquity 48: 253–276.

    Google Scholar 

  • Wiessner, P. (1984). Reconsidering the behavioral basis for style: A case study among the Kalahari San. Journal of Anthropological Archaeology 3: 190–234.

    Google Scholar 

  • Winterhalder, B., and Smith, E. A. (2000). Analyzing adaptive strategies: Human behavioral ecology at 25. Evolutionary Anthropology 9(2): 51–72.

    Google Scholar 

  • Witschey, W. R. T., and Brown, C. T. (2003). Fractal Fragmentation of Archaeological Ceramics. Paper presented at the symposium “Fractals in Archaeology” at the 68th Annual Meeting of the Society for American Archaeology, April 9–13, Milwaukee, Wisconsin.

  • Wobst, H. M. (1977). Stylistic behavior and information exchange. In Cleland, C. E. (ed.), For the Director: Research Essays in Honor of James B. Griffin, Anthropological Papers No. 61, Museum of Anthropology, University of Michigan, Ann Arbor, pp. 317–342.

    Google Scholar 

  • Yellen, J. E. (1977). Archaeological approaches to the present: Models for reconstructing the past. New York: Academic Press.

    Google Scholar 

  • Zipf, G. K. (1949). Human Behavior and the Principle of Least Effort. Cambridge: Addison-Wesley Publishing Co.

    Google Scholar 

  • Zubrow, E. B. W. (1985). Fractals, cultural behavior, and prehistory. American Archeology 5(1): 63–77.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clifford T. Brown.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, C.T., Witschey, W.R.T. & Liebovitch, L.S. The Broken Past: Fractals in Archaeology. J Archaeol Method Theory 12, 37–78 (2005). https://doi.org/10.1007/s10816-005-2396-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10816-005-2396-6

Keywords