Skip to main content

Advertisement

Log in

DNA Double-Strand Break Accumulation in Alzheimer’s Disease: Evidence from Experimental Models and Postmortem Human Brains

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a progressive neurodegenerative disease that accounts for a majority of dementia cases. AD is characterized by progressive neuronal death associated with neuropathological lesions consisting of neurofibrillary tangles and senile plaques. While the pathogenesis of AD has been widely investigated, significant gaps in our knowledge remain about the cellular and molecular mechanisms promoting AD. Recent studies have highlighted the role of DNA damage, particularly DNA double-strand breaks (DSBs), in the progression of neuronal loss in a broad spectrum of neurodegenerative diseases. In the present study, we tested the hypothesis that accumulation of DNA DSB plays an important role in AD pathogenesis. To test our hypothesis, we examined DNA DSB expression and DNA repair function in the hippocampus of human AD and non-AD brains by immunohistochemistry, ELISA, and RT-qPCR. We observed increased DNA DSB accumulation and reduced DNA repair function in the hippocampus of AD brains compared to the non-AD control brains. Next, we found significantly increased levels of DNA DSB and altered levels of DNA repair proteins in the hippocampus of 5xFAD mice compared to non-transgenic mice. Interestingly, increased accumulation of DNA DSBs and altered DNA repair proteins were also observed in cellular models of AD. These findings provided compelling evidence that AD is associated with accumulation of DNA DSB and/or alteration in DSB repair proteins which may influence an important early part of the pathway toward neural damage and memory loss in AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data Availability

The data generated and analyzed in this study are available from the corresponding author on reasonable request.

References

  1. Cummings JL (2004) Alzheimer’s disease. N Engl J Med 351:56–67. https://doi.org/10.1056/NEJMra040223

    Article  CAS  PubMed  Google Scholar 

  2. Apostolova LG (2016) Alzheimer disease. Continuum (Minneap Minn) 22:419–434. https://doi.org/10.1212/CON.0000000000000307

    Article  Google Scholar 

  3. Du X, Wang X, Geng M (2018) Alzheimer’s disease hypothesis and related therapies. Transl Neurodegener 7:2. https://doi.org/10.1186/s40035-018-0107-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Iyama T, Wilson DM 3rd (2013) DNA repair mechanisms in dividing and non-dividing cells. DNA Repair (Amst) 12:620–636. https://doi.org/10.1016/j.dnarep.2013.04.015

    Article  CAS  Google Scholar 

  5. Jeppesen DK, Bohr VA, Stevnsner T (2011) DNA repair deficiency in neurodegeneration. Prog Neurobiol 94:166–200. https://doi.org/10.1016/j.pneurobio.2011.04.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Maynard S, Fang EF, Scheibye-Knudsen M, Croteau DL, Bohr VA (2015) DNA damage, DNA repair, aging, and neurodegeneration. Cold Spring Harb Perspect Med 5:a025130. https://doi.org/10.1101/cshperspect.a025130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Borgesius NZ, de Waard MC, van der Pluijm I, Omrani A, Zondag GC, van der Horst GT, Melton DW, Hoeijmakers JH et al (2011) Accelerated age-related cognitive decline and neurodegeneration, caused by deficient DNA repair. J Neurosci 31:12543–12553. https://doi.org/10.1523/JNEUROSCI.1589-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yu H, Harrison FE, Xia F (2018) Altered DNA repair; an early pathogenic pathway in Alzheimer’s disease and obesity. Sci Rep 8:5600. https://doi.org/10.1038/s41598-018-23644-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shen X, Chen J, Li J, Kofler J, Herrup K (2016) Neurons in vulnerable regions of the Alzheimer’s disease brain display reduced ATM signaling. eNeuro. https://doi.org/10.1523/ENEURO.0124-15.2016

  10. Mitra J, Guerrero EN, Hegde PM, Liachko NF, Wang H, Vasquez V, Gao J, Pandey A et al (2019) Motor neuron disease-associated loss of nuclear TDP-43 is linked to DNA double-strand break repair defects. Proc Natl Acad Sci U S A 116:4696–4705. https://doi.org/10.1073/pnas.1818415116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Suberbielle E, Djukic B, Evans M, Kim DH, Taneja P, Wang X, Finucane M, Knox J et al (2015) DNA repair factor BRCA1 depletion occurs in Alzheimer brains and impairs cognitive function in mice. Nat Commun 6:8897. https://doi.org/10.1038/ncomms9897

    Article  CAS  PubMed  Google Scholar 

  12. Gencer M, Dasdemir S, Cakmakoglu B, Cetinkaya Y, Varlibas F, Tireli H, Kucukali CI, Ozkok E et al (2012) DNA repair genes in Parkinson’s disease. Genet Test Mol Biomarkers 16:504–507. https://doi.org/10.1089/gtmb.2011.0252

    Article  CAS  PubMed  Google Scholar 

  13. Lu T, Pan Y, Kao SY, Li C, Kohane I, Chan J, Yankner BA (2004) Gene regulation and DNA damage in the ageing human brain. Nature 429:883–891. https://doi.org/10.1038/nature02661

    Article  CAS  PubMed  Google Scholar 

  14. Thadathil N, Hori R, Xiao J, Khan MM (2019) DNA double-strand breaks: a potential therapeutic target for neurodegenerative diseases. Chromosom Res 27:345–364. https://doi.org/10.1007/s10577-019-09617-x

    Article  CAS  Google Scholar 

  15. Lillenes MS, Rabano A, Stoen M, Riaz T, Misaghian D, Mollersen L, Esbensen Y, Gunther CC et al (2016) Altered DNA base excision repair profile in brain tissue and blood in Alzheimer’s disease. Mol Brain 9:61. https://doi.org/10.1186/s13041-016-0237-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang J, Xiong S, Xie C, Markesbery WR, Lovell MA (2005) Increased oxidative damage in nuclear and mitochondrial DNA in Alzheimer’s disease. J Neurochem 93:953–962. https://doi.org/10.1111/j.1471-4159.2005.03053.x

    Article  CAS  PubMed  Google Scholar 

  17. Alt FW, Schwer B (2018) DNA double-strand breaks as drivers of neural genomic change, function, and disease. DNA Repair (Amst) 71:158–163. https://doi.org/10.1016/j.dnarep.2018.08.019

    Article  CAS  Google Scholar 

  18. Madabhushi R, Pan L, Tsai LH (2014) DNA damage and its links to neurodegeneration. Neuron 83:266–282. https://doi.org/10.1016/j.neuron.2014.06.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shanbhag NM, Evans MD, Mao W, Nana AL, Seeley WW, Adame A, Rissman RA, Masliah E et al (2019) Early neuronal accumulation of DNA double strand breaks in Alzheimer’s disease. Acta Neuropathol Commun 7:77. https://doi.org/10.1186/s40478-019-0723-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bonner WM, Redon CE, Dickey JS, Nakamura AJ, Sedelnikova OA, Solier S, Pommier Y (2008) GammaH2AX and cancer. Nat Rev Cancer 8:957–967. https://doi.org/10.1038/nrc2523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ferguson DO, Alt FW (2001) DNA double strand break repair and chromosomal translocation: lessons from animal models. Oncogene 20:5572–5579. https://doi.org/10.1038/sj.onc.1204767

    Article  CAS  PubMed  Google Scholar 

  22. Richardson C, Jasin M (2000) Frequent chromosomal translocations induced by DNA double-strand breaks. Nature 405:697–700. https://doi.org/10.1038/35015097

    Article  CAS  PubMed  Google Scholar 

  23. Bredemeyer AL, Sleckman BP (2015) DNA damage responses: beyond double-strand break repair. Curr Biol 25:R45–R46. https://doi.org/10.1016/j.cub.2014.11.024

    Article  CAS  PubMed  Google Scholar 

  24. Stein D, Toiber D (2017) DNA damage and neurodegeneration: the unusual suspect. Neural Regen Res 12:1441–1442. https://doi.org/10.4103/1673-5374.215254

    Article  PubMed  PubMed Central  Google Scholar 

  25. Nakad R, Schumacher B (2016) DNA damage response and immune defense: links and mechanisms. Front Genet 7:147. https://doi.org/10.3389/fgene.2016.00147

    Article  PubMed  PubMed Central  Google Scholar 

  26. Herrup K, Neve R, Ackerman SL, Copani A (2004) Divide and die: cell cycle events as triggers of nerve cell death. J Neurosci 24:9232–9239. https://doi.org/10.1523/JNEUROSCI.3347-04.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fielder E, von Zglinicki T, Jurk D (2017) The DNA damage response in neurons: die by apoptosis or survive in a senescence-like state? J Alzheimers Dis 60:S107–S131. https://doi.org/10.3233/JAD-161221

    Article  CAS  PubMed  Google Scholar 

  28. Martin LJ, Chang Q (2018) DNA damage response and repair, DNA methylation, and cell death in human neurons and experimental animal neurons are different. J Neuropathol Exp Neurol 77:636–655. https://doi.org/10.1093/jnen/nly040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Merlo D, Mollinari C, Racaniello M, Garaci E, Cardinale A (2016) DNA double strand breaks: a common theme in neurodegenerative diseases. Curr Alzheimer Res 13:1208–1218

    Article  CAS  PubMed  Google Scholar 

  30. Adamec E, Vonsattel JP, Nixon RA (1999) DNA strand breaks in Alzheimer’s disease. Brain Res 849:67–77

    Article  CAS  PubMed  Google Scholar 

  31. Coppede F, Migliore L (2009) DNA damage and repair in Alzheimer’s disease. Curr Alzheimer Res 6:36–47

    Article  CAS  PubMed  Google Scholar 

  32. Ross CA, Truant R (2017) DNA repair: a unifying mechanism in neurodegeneration. Nature 541:34–35. https://doi.org/10.1038/nature21107

    Article  CAS  PubMed  Google Scholar 

  33. Hou Y, Song H, Croteau DL, Akbari M, Bohr VA (2017) Genome instability in Alzheimer disease. Mech Ageing Dev 161:83–94. https://doi.org/10.1016/j.mad.2016.04.005

    Article  CAS  PubMed  Google Scholar 

  34. Kanungo J (2016) DNA-PK Deficiency in Alzheimer’s disease. J Neurol Neuromedicine 1:17–22

    Article  PubMed  PubMed Central  Google Scholar 

  35. Davydov V, Hansen LA, Shackelford DA (2003) Is DNA repair compromised in Alzheimer’s disease? Neurobiol Aging 24:953–968

    Article  CAS  PubMed  Google Scholar 

  36. Mah LJ, El-Osta A, Karagiannis TC (2010) gammaH2AX: a sensitive molecular marker of DNA damage and repair. Leukemia 24:679–686. https://doi.org/10.1038/leu.2010.6

    Article  CAS  PubMed  Google Scholar 

  37. Burma S, Chen BP, Murphy M, Kurimasa A, Chen DJ (2001) ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem 276:42462–42467. https://doi.org/10.1074/jbc.C100466200

    Article  CAS  PubMed  Google Scholar 

  38. Ismail IH, Hendzel MJ (2008) The gamma-H2A.X: is it just a surrogate marker of double-strand breaks or much more? Environ Mol Mutagen 49:73–82. https://doi.org/10.1002/em.20358

    Article  CAS  PubMed  Google Scholar 

  39. Toro C, Hori RT, MCV M, Tifft CJ, Goldstein A, Gahl WA, Adams DR, Harper F et al (2018) A recurrent de novo missense mutation in UBTF causes developmental neuroregression. Hum Mol Genet 27:691–705. https://doi.org/10.1093/hmg/ddx435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Khan MM, Xiao J, Patel D, LeDoux MS (2018) DNA damage and neurodegenerative phenotypes in aged Ciz1 null mice. Neurobiol Aging 62:180–190. https://doi.org/10.1016/j.neurobiolaging.2017.10.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Khan MM, Xiao J, Hollingsworth TJ, Patel D, Selley DE, Ring TL, LeDoux MS (2019) Gnal haploinsufficiency causes genomic instability and increased sensitivity to haloperidol. Exp Neurol 318:61–70. https://doi.org/10.1016/j.expneurol.2019.04.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Khan MM, Zaheer S, Nehman J, Zaheer A (2014) Suppression of glia maturation factor expression prevents 1-methyl-4-phenylpyridinium (MPP(+))-induced loss of mesencephalic dopaminergic neurons. Neuroscience 277:196–205. https://doi.org/10.1016/j.neuroscience.2014.07.003

    Article  CAS  PubMed  Google Scholar 

  43. Lamarche BJ, Orazio NI, Weitzman MD (2010) The MRN complex in double-strand break repair and telomere maintenance. FEBS Lett 584:3682–3695. https://doi.org/10.1016/j.febslet.2010.07.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Iannelli F, Galbiati A, Capozzo I, Nguyen Q, Magnuson B, Michelini F, D'Alessandro G, Cabrini M et al (2017) A damaged genome’s transcriptional landscape through multilayered expression profiling around in situ-mapped DNA double-strand breaks. Nat Commun 8:15656. https://doi.org/10.1038/ncomms15656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ui A, Nagaura Y, Yasui A (2015) Transcriptional elongation factor ENL phosphorylated by ATM recruits polycomb and switches off transcription for DSB repair. Mol Cell 58:468–482. https://doi.org/10.1016/j.molcel.2015.03.023

    Article  CAS  PubMed  Google Scholar 

  46. Lee MH, Siddoway B, Kaeser GE, Segota I, Rivera R, Romanow WJ, Liu CS, Park C et al (2018) Somatic APP gene recombination in Alzheimer’s disease and normal neurons. Nature 563:639–645. https://doi.org/10.1038/s41586-018-0718-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Madabhushi R, Gao F, Pfenning AR, Pan L, Yamakawa S, Seo J, Rueda R, Phan TX et al (2015) Activity-induced DNA breaks govern the expression of neuronal early-response genes. Cell 161:1592–1605. https://doi.org/10.1016/j.cell.2015.05.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Suberbielle E, Sanchez PE, Kravitz AV, Wang X, Ho K, Eilertson K, Devidze N, Kreitzer AC et al (2013) Physiologic brain activity causes DNA double-strand breaks in neurons, with exacerbation by amyloid-beta. Nat Neurosci 16:613–621. https://doi.org/10.1038/nn.3356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sharma V, Collins LB, Chen TH, Herr N, Takeda S, Sun W, Swenberg JA, Nakamura J (2016) Oxidative stress at low levels can induce clustered DNA lesions leading to NHEJ mediated mutations. Oncotarget 7:25377–25390. https://doi.org/10.18632/oncotarget.8298

    Article  PubMed  PubMed Central  Google Scholar 

  50. Yang JL, Chen WY, Mukda S, Yang YR, Sun SF, Chen SD (2020) Oxidative DNA damage is concurrently repaired by base excision repair (BER) and apyrimidinic endonuclease 1 (APE1)-initiated nonhomologous end joining (NHEJ) in cortical neurons. Neuropathol Appl Neurobiol 46:375–390. https://doi.org/10.1111/nan.12584

    Article  CAS  PubMed  Google Scholar 

  51. Li Y, Xie L, Huang T, Zhang Y, Zhou J, Qi B, Wang X, Chen Z et al (2019) Aging neurovascular unit and potential role of DNA damage and repair in combating vascular and neurodegenerative disorders. Front Neurosci 13:778. https://doi.org/10.3389/fnins.2019.00778

    Article  PubMed  PubMed Central  Google Scholar 

  52. Myung NH, Zhu X, Kruman II, Castellani RJ, Petersen RB, Siedlak SL, Perry G, Smith MA et al (2008) Evidence of DNA damage in Alzheimer disease: phosphorylation of histone H2AX in astrocytes. Age (Dordr) 30(4):209–215. https://doi.org/10.1007/s11357-008-9050-7

    Article  Google Scholar 

  53. Ou HL, Schumacher B (2018) DNA damage responses and p53 in the aging process. Blood 131(5):488–495. https://doi.org/10.1182/blood-2017-07-746396

    Article  CAS  PubMed  Google Scholar 

  54. Tse KH, Cheng A, Ma F, Herrup K (2018) DNA damage-associated oligodendrocyte degeneration precedes amyloid pathology and contributes to Alzheimer’s disease and dementia. Alzheimers Dement 14:664–679. https://doi.org/10.1016/j.jalz.2017.11.010

    Article  PubMed  PubMed Central  Google Scholar 

  55. Pan L, Penney J, Tsai LH (2014) Chromatin regulation of DNA damage repair and genome integrity in the central nervous system. J Mol Biol 426:3376–3388. https://doi.org/10.1016/j.jmb.2014.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Schneider L, Fumagalli M, d'Adda di Fagagna F (2012) Terminally differentiated astrocytes lack DNA damage response signaling and are radioresistant but retain DNA repair proficiency. Cell Death Differ 19(4):582–591. https://doi.org/10.1038/cdd.2011.129

    Article  CAS  PubMed  Google Scholar 

  57. Tse KH, Herrup K (2017) DNA damage in the oligodendrocyte lineage and its role in brain aging. Mech Ageing Dev 161(Pt A):37–50. https://doi.org/10.1016/j.mad.2016.05.006

    Article  CAS  PubMed  Google Scholar 

  58. Kinner A, Wu W, Staudt C, Iliakis G (2008) Gamma-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin. Nucleic Acids Res 36:5678–5694. https://doi.org/10.1093/nar/gkn550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Weyemi U, Paul BD, Snowman AM, Jailwala P, Nussenzweig A, Bonner WM, Snyder SH (2018) Histone H2AX deficiency causes neurobehavioral deficits and impaired redox homeostasis. Nat Commun 9:1526. https://doi.org/10.1038/s41467-018-03948-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tanaka T, Huang X, Jorgensen E, Gietl D, Traganos F, Darzynkiewicz Z, Albino AP (2007) ATM activation accompanies histone H2AX phosphorylation in A549 cells upon exposure to tobacco smoke. BMC Cell Biol 8:26. https://doi.org/10.1186/1471-2121-8-26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sanchez-Flores M, Pasaro E, Bonassi S, Laffon B, Valdiglesias V (2015) gammaH2AX assay as DNA damage biomarker for human population studies: defining experimental conditions. Toxicol Sci 144:406–413. https://doi.org/10.1093/toxsci/kfv011

    Article  CAS  PubMed  Google Scholar 

  62. Valdiglesias V, Giunta S, Fenech M, Neri M, Bonassi S (2013) gammaH2AX as a marker of DNA double strand breaks and genomic instability in human population studies. Mutat Res 753:24–40. https://doi.org/10.1016/j.mrrev.2013.02.001

    Article  CAS  PubMed  Google Scholar 

  63. Kanungo J (2017) DNA-PK and P38 MAPK: a kinase collusion in Alzheimer’s disease? Brain Disord Ther 6:232. https://doi.org/10.4172/2168-975X.1000232

    Article  PubMed  PubMed Central  Google Scholar 

  64. Mullaart E, Boerrigter ME, Ravid R, Swaab DF, Vijg J (1990) Increased levels of DNA breaks in cerebral cortex of Alzheimer’s disease patients. Neurobiol Aging 11:169–173

    Article  CAS  PubMed  Google Scholar 

  65. Sykora P, Misiak M, Wang Y, Ghosh S, Leandro GS, Liu D, Tian J, Baptiste BA et al (2015) DNA polymerase beta deficiency leads to neurodegeneration and exacerbates Alzheimer disease phenotypes. Nucleic Acids Res 43:943–959. https://doi.org/10.1093/nar/gku1356

    Article  CAS  PubMed  Google Scholar 

  66. Gruz-Gibelli E, Chessel N, Allioux C, Marin P, Piotton F, Leuba G, Herrmann FR, Savioz A (2016) The vitamin A derivative all-trans retinoic acid repairs amyloid-beta-induced double-strand breaks in neural cells and in the murine neocortex. Neural Plast 2016:3707406–3707411. https://doi.org/10.1155/2016/3707406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gensler HL, Bernstein H (1981) DNA damage as the primary cause of aging. Q Rev Biol 56:279–303

    Article  CAS  PubMed  Google Scholar 

  68. Dorszewska J, Kempisty B, Jaroszewska-Kolecka J, Rozycka A, Florczak J, Lianeri M, Jagodzinski PP, Kozubski W (2009) Expression and polymorphisms of gene 8-oxoguanine glycosylase 1 and the level of oxidative DNA damage in peripheral blood lymphocytes of patients with Alzheimer’s disease. DNA Cell Biol 28:579–588. https://doi.org/10.1089/dna.2009.0926

    Article  CAS  PubMed  Google Scholar 

  69. Jacobsen E, Beach T, Shen Y, Li R, Chang Y (2004) Deficiency of the Mre11 DNA repair complex in Alzheimer’s disease brains. Brain Res Mol Brain Res 128:1–7. https://doi.org/10.1016/j.molbrainres.2004.05.023

    Article  CAS  PubMed  Google Scholar 

  70. Shackelford DA (2006) DNA end joining activity is reduced in Alzheimer’s disease. Neurobiol Aging 27:596–605. https://doi.org/10.1016/j.neurobiolaging.2005.03.009

    Article  CAS  PubMed  Google Scholar 

  71. Dimitrova N, Chen YC, Spector DL, de Lange T (2008) 53BP1 promotes non-homologous end joining of telomeres by increasing chromatin mobility. Nature 456:524–528. https://doi.org/10.1038/nature07433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Panier S, Boulton SJ (2014) Double-strand break repair: 53BP1 comes into focus. Nat Rev Mol Cell Biol 15:7–18. https://doi.org/10.1038/nrm3719

    Article  CAS  PubMed  Google Scholar 

  73. Dantuma NP, Groothuis TA, Salomons FA, Neefjes J (2006) A dynamic ubiquitin equilibrium couples proteasomal activity to chromatin remodeling. J Cell Biol 173:19–26. https://doi.org/10.1083/jcb.200510071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Keck S, Nitsch R, Grune T, Ullrich O (2003) Proteasome inhibition by paired helical filament-tau in brains of patients with Alzheimer’s disease. J Neurochem 85:115–122. https://doi.org/10.1046/j.1471-4159.2003.01642.x

    Article  CAS  PubMed  Google Scholar 

  75. Oddo S (2008) The ubiquitin-proteasome system in Alzheimer’s disease. J Cell Mol Med 12:363–373. https://doi.org/10.1111/j.1582-4934.2008.00276.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sulistio YA, Heese K (2016) The ubiquitin-proteasome system and molecular chaperone deregulation in Alzheimer’s disease. Mol Neurobiol 53:905–931. https://doi.org/10.1007/s12035-014-9063-4

    Article  CAS  PubMed  Google Scholar 

  77. Coverley D, Marr J, Ainscough J (2005) Ciz1 promotes mammalian DNA replication. J Cell Sci 118:101–112. https://doi.org/10.1242/jcs.01599

    Article  CAS  PubMed  Google Scholar 

  78. Xiao J, Khan MM, Vemula S, Tian J, LeDoux MS (2018) Consequences of Cre-mediated deletion of Ciz1 exon 5 in mice. FEBS Lett 592:3101–3110. https://doi.org/10.1002/1873-3468.13221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the William and Ella Owens Medical Research Foundation, Department of Defense grant W81XWH-17-1-0062, and the Division of Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Moshahid Khan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 3187 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thadathil, N., Delotterie, D.F., Xiao, J. et al. DNA Double-Strand Break Accumulation in Alzheimer’s Disease: Evidence from Experimental Models and Postmortem Human Brains. Mol Neurobiol 58, 118–131 (2021). https://doi.org/10.1007/s12035-020-02109-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-02109-8

Keywords

Profiles

  1. Mohammad Moshahid Khan