Souriau, J.-M.: Une méthode pour la décomposition spectrale et l’inversion des matrices. CRAS 227(2), 1010–1011 (1948)
MATH
Google Scholar
Souriau, J.-M.: Calcul Linéaire. EUCLIDE, Introduction aux études Scientifiques, vol. 1. Presses Universitaires de France, Paris (1959)
Google Scholar
Souriau, J.-M.; Vallée, C.; Réaud, K.; Fortuné, D.: Méthode de Le Verrier–Souriau et équations différentielles linéaires. CRAS s. IIB Mech. 328(10), 773–778 (2000)
Google Scholar
Souriau, J.-M.: Grammaire de la Nature. Private publication (2007)
Google Scholar
Thomas, F.: Nouvelle méthode de résolution des équations du mouvement de systèmes vibratoires linéaire, discrets, DEA Mécanique, université de Poitiers (1998)
Google Scholar
Réaud, K., Fortuné, D., Prudhorffne, S. Vallée, C.: Méthode d’étude des vibrations d’un système mécanique non basée sur le calcul de ses modes propres. XVème Congrès français de Mécanique, Nancy, (2001)
Google Scholar
Champion-Réaud, K.: Méthode d’étude des vibrations d’un système mécanique non basée sur le calcul de ses modes propres. SupAéro PhD (2002)
Google Scholar
Réaud, K., Vallée, Cl., Fortuné, D.: Détermination des vecteurs propres d’un système vibratoire par exploitation du concept de matrice adjuguée. 6ème Colloque national en calcul des structures, Giens (2003)
Google Scholar
Champion-Réaud, K.; Vallée, C.; Fortuné, D. Champion-Réaud, J.L.: Extraction des pulsations et formes propres de la réponse d’un système vibratoire. 16ème Congrès Français de Mécanique, Nice, (2003)
Google Scholar
Vallée, C., Fortuné, D., Champion-Réaud, K.: A general solution of a linear dissipative oscillatory system avoiding decomposition into eigenvectors. J. Appl. Math. Mech. 69, 837–843 (2005)
Article
MathSciNet
Google Scholar
Le Verrier, U.: Sur les variations séculaires des éléments des orbites pour les sept planètes principales. J. de Math. (1) 5, 230 (1840)
Google Scholar
Le Verrier, U.: Variations séculaires des éléments elliptiques des sept planètes principales. I Math. Pures Appli. 4, 220–254 (1840)
Google Scholar
Juhel, A.: Le Verrier et la première détermination des valeurs propres d’une matrice, Bibnum, Physique (2011)
Google Scholar
Tong, M.D., Chen, W.K.: A novel proof of the Souriau-Frame-Faddeev algorithm. IEEE Trans. Autom. Control 38, 1447–1448 (1993)
Article
MathSciNet
Google Scholar
Faddeev, D. K.; Sominsky, I. S.: Problems in Higher Algebra, Problem 979. Mir Publishers, Moskow-Leningrad (1949)
Google Scholar
Frame, J.S.: A simple recursion formula for inverting a matrix. Bull. Amer. Math. Soc. 56, 1045 (1949)
Google Scholar
Forsythe, G.E., Straus, L.W.: The Souriau-Frame characteristic equation algorithm on a digital computer. J. Math. Phys. Stud. Appl. Math. 34(1–4), 152–156 (1955)
MathSciNet
MATH
Google Scholar
Fadeev, D.K. Fadeeva, V.N.: Computational Methods of Linear Algebra (translated from Russian by R. C. Williams). W. H. Freeman and Co., San Francisco (1963)
Google Scholar
Greville, T.N.E.: The Souriau-Frame algorithm and the Drazin pseudoinverse. Linear Algebr. Its Appl. 6, 205 (1973)
Article
MathSciNet
Google Scholar
Downs, T.: Some properties of the Souriau-frame algorithm with application to the inversion of rational matrices. SIAM J. on Applied Mathematics 28(2), 237–251 (1975)
Article
MathSciNet
Google Scholar
Csanky, L.: Almost parallel matrix inversion algorithms. SIAM 618–623 (1976)
Google Scholar
Hartwig, R.E.: More on the Souriau-Frame algorithm and the Drazin inverse. SIAM J. Appl. Math. 31(1), 42–46 (1976)
Article
MathSciNet
Google Scholar
Hou, S.-H.: A simple proof of the Leverrier-Faddeev characteristic polynomial algorithm. SIAM Rev. 40(3), 706–709 (1998)
Article
MathSciNet
Google Scholar
Helmberg, G., Wagner, P., Veltkamp, G.: On Faddeev-Leverrier’s method fort the computation of the characteristic polynomial of a matrix and of eigenvectors. Linear Algebra Its Appl. 185, 219–233 (1993)
Article
MathSciNet
Google Scholar
Barnett, S.: Leverrier’s algorithm: a new proof and extensions. SIAM J. Matrix Anal. Appl. 10, 551–556 (1989)
Article
MathSciNet
Google Scholar
Keller-Gehrig, W.: Fast algorithms for the characteristic polynomial. Theor. Comput. Sci. 36, 309–317 (1985)
Article
MathSciNet
Google Scholar
Preparata, F., Et Sarwate, D.: An improved parallel processor bound in fast matrix inversion. Inf. Process. Lett. 7(3), 148–150 (1978)
Article
MathSciNet
Google Scholar
Pernet, C.: Algèbre linéaire exacte efficace: le calcul du polynôme caractéristique, PhD Université Joseph Fourier, 27 (2006)
Google Scholar
Eriksen, P.S.: Geodesics connected with the fisher metric on the multivariate normal manifold. Technical report, 86-13; Inst. of Elec. Sys., Aalborg University (1986)
Google Scholar
Eriksen, P.S.: Geodesics connected with the Fisher metric on the multivariate normal manifold. In Proceedings of the GST Workshop, Lancaster, UK, 28–31 October 1987
Google Scholar
Moler, C.B., van Loan, C.F.: Nineteen dubious ways to compute the exponential of a matrix. SIAM Rev. 20, 801–836 (2003)
Article
MathSciNet
Google Scholar
Hochbruck, M., Lubich, C., Selhofer, H.: Exponential integrators for large systems of differential equations. SIAM J. Sci. Comput. 19(5), 1552–1574 (1998)
Article
MathSciNet
Google Scholar
Iserles, A., Zanna, A.: Efficient computation of the matrix exponential by generalized polar decompositions. SIAM J. Numer. Anal. 42(5), 2218–2256 (2005)
Article
MathSciNet
Google Scholar
Celledoni, E., Iserles, A.: Approximating the exponential from a Lie algebra to a Lie group. Math. Comput. 69, 1457–1480 (2000)
Article
MathSciNet
Google Scholar
Celledoni, E., Iserles, A.: Methods for the approximation of the matrix exponential in a Lie-algebraic setting. IMA J. Numer. Anal. 21, 463–488 (2001)
Article
MathSciNet
Google Scholar
Leite, F.S., Crouch, P.: Closed forms for the exponential mapping on matrix Lie groups based on Putzer’s method. J. Math. Phys. 40(7), 3561–3568 (1999)
Article
MathSciNet
Google Scholar
Lewis, D., Olver, P.J.: Geometric integration algorithms on homogeneous manifolds’. Found. Comput. Math. 2, 363–392 (2002)
Article
MathSciNet
Google Scholar
Munthe-Kaas, H., Quispel, R.G.W., Zanna, A.: Generalized polar decompositions on Lie groups with involutive automorphisms. Found. Comput. Math. 1(3), 297–324 (2001)
Article
MathSciNet
Google Scholar
Saad, Y.: Analysis of some Krylov subspace approximations to the matrix exponential operator. SIAM J. Numer. Anal. 29, 209–228 (1992)
Article
MathSciNet
Google Scholar
Zanna, A.: Recurrence relation for the factors in the polar decomposition on Lie groups. Technical report, Report no. 192, Dep. of Infor., Univ. of Bergen, Math. Comp. (2000)
Google Scholar
Zanna, A., Munthe-Kaas, H.Z.: Generalized polar decompositions for the approximation of the matrix exponential’. SIAM J. Matrix Anal. 23(3), 840–862 (2002)
Article
MathSciNet
Google Scholar
Nobari, E., Hosseini, S.M.: A method for approximation of the exponential map in semidirect product of matrix Lie groups and some applications. J. Comput. Appl. Math. 234(1), 305–315 (2010)
Article
MathSciNet
Google Scholar