Anselmet, F., Gagne, Y., Hopfinger, E. J., and Antonia, R. A. (1984), High-order Velocity Structure Functions in Turbulent Shear Flows, J. Fluid Mech. 140, 63.
Article
Google Scholar
Chhabra, A., Jensen, R., and Sreenivasan, K. R. (1989), Multifractals, Multiplicative Processes and the Thermodynamic Formalism, Phys. Rev. A (in print).
Google Scholar
Feigenbaum, M. (1987), Some Characterizations of Strange Sets, J. Stat. Phys. 46, 919.
Article
Google Scholar
Frisch, U., and Parisi, G., On the singularity structure of fully developed turbulence, In Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics (eds. Ghil, M., Benzi, R., and Parisi, G.) (North-Holland, New York 1985).
Google Scholar
Halsey, T. C., Jensen, M. H., Kadanoff, L. P., Procaccia, I., and Shraiman, B. I. (1986), Fractal Measures and their Singularities: The Characterization of Strange Sets, Phys. Rev. A33, 1141.
Google Scholar
Hentschel, H. G. E., and Procaccia, I. (1983), The Infinite Number of Generalized Dimensions of Fractals and Strange Attractors, Physica 8D, 435.
Google Scholar
Mandelbrot, B. B. (1974), Intermittent Turbulence in Self-similar Cascades: Divergence of High Moments and Dimension of the Carrier, J. Fluid Mech. 62, 331.
Article
Google Scholar
Mandelbrot, B. B., The Fractal Geometry of Nature (Freeman, San Francisco 1982).
Google Scholar
Mandlebrot, B. B., An introduction to multifractal distribution functions, In Fluctuations and Pattern Formation (eds. Stanley, H. E., and Ostrowsky, N.) (Kluwer, Dordrecht-Boston 1988); see also this volume.
Google Scholar
Marstrand, J. M. (1954), Some Fundamental Geometrical Properties of Plane Sets of Fractal Dimensions, London Math. Soc. 3, 257.
Google Scholar
Mattila, P. (1975), Hausdorff Dimension, Orthogonal Projections and Intersections with Planes, Ann. Acad. Sci. Fenn. Ser. A I Math. 1, 227.
Google Scholar
Meneveau, C. (1989), The Multifractal Nature of Turbulence, Ph.D. Thesis, Yale University.
Google Scholar
Meneveau, C., and Sreenivasan, K. R. (1987a), The Multifractal Dissipation Field in Turbulent Flows, Nuclear Physics B (Proc. Suppl.) 2, 49.
Article
Google Scholar
Meneveau, C., and Sreenivasan, K. R. (1987b), Simple Multifractal Cascade Model for Fully Developed Turbulence, Phys. Rev. Lett. 59, 1424.
Article
Google Scholar
Meneveau, C., and Sreenivasan, K. R. (1989), Measurement of f (α) from Scaling of Histograms, and Application to Dynamical Systems and Fully Developed Turbulence, Phys. Lett. A (in print).
Google Scholar
Prasad, R. R., Meneveau, C., and Sreenivasan, K. R. (1988), Multifractal Nature of the Dissipation Field of Passive Scalars in Fully Turbulent Flows, Phys. Rev. Lett. 61, 74.
Article
Google Scholar
Prasad, R. R., and Sreenivasan, K. R. (1989), Scalar Interfaces in Digital Images of Turbulent Flows, Experiments in Fluids 7, 259.
Article
Google Scholar
Ramshankar, R. (1988), The Dynamics of Countercurrent Mixing Layers, Ph.D. Thesis, Yale University.
Google Scholar
Richardson, L. F., Weather Prediction by Numerical Process (Cambridge University Press, Cambridge, U.K. 1922).
Google Scholar
Sreenivasan, K. R., and Meneveau, C. (1986), The Fractal Facets of Turbulence, J. Fluid Mech. 173, 357.
Article
Google Scholar
Sreenivasan, K. R., and Meneveau, C. (1988), Singularities of the Equations of Fluid Motion, Phys. Rev. A38, 6287.
Google Scholar
Sreenivasan, K. R., Ramshankar, R., and Meneveau, C. (1989), Mixing, Entrainment, and Fractal Dimension of Interfaces in Turbulent Flows, Proc. Roy. Soc. Lond. A421, 79.
Google Scholar
Taylor, G. I. (1938), The Spectrum of Turbulence, Proc. Roy. Soc. Lond. A164, 476.
Google Scholar