Abstract
The change in ocean net surface heat flux plays an important role in the climate system. It is closely related to the ocean heat content change and ocean heat transport, particularly over the North Atlantic, where the ocean loses heat to the atmosphere, affecting the AMOC (Atlantic Meridional Overturning Circulation) variability and hence the global climate. However, the difference between simulated surface heat fluxes is still large due to poorly represented dynamical processes involving multiscale interactions in model simulations. In order to explain the discrepancy of the surface heat flux over the North Atlantic, datasets from nineteen AMIP6 and eight highresSST-present climate model simulations are analyzed and compared with the DEEPC (Diagnosing Earth’s Energy Pathways in the Climate system) product. As an indirect check of the ocean surface heat flux, the oceanic heat transport inferred from the combination of the ocean surface heat flux, sea ice, and ocean heat content tendency is compared with the RAPID (Rapid Climate Change-Meridional Overturning Circulation and Heat flux array) observations at 26°N in the Atlantic. The AMIP6 simulations show lower inferred heat transport due to less heat loss to the atmosphere. The heat loss from the AMIP6 ensemble mean north of 26°N in the Atlantic is about 10 W m−2 less than DEEPC, and the heat transport is about 0.30 PW (1 PW = 1015 W) lower than RAPID and DEEPC. The model horizontal resolution effect on the discrepancy is also investigated. Results show that by increasing the resolution, both surface heat flux north of 26°N and heat transport at 26°N in the Atlantic can be improved.
摘 要
海表净热通量变化在气候系统中起着重要作用. 它与海洋热含量变化以及海洋热能传输密切相关, 特别是在北大西洋, 海洋向大气散失热量, 影响 AMOC (大西洋经向翻转环流) 变化, 从而影响全球气候. 然而, 由于模式不能很好地模拟多尺度相互作用的动态过程, 模拟的海表热通量仍然有很大差异. 为了解释北大西洋海表热通量的差异, 本文分析了 19 个 AMIP6 和 8 个 highresSST 气候模式模拟资料, 并与 DEEPC (诊断气候系统中的地球能量流动) 产品进行了比较. 作为对海表热通量的间接检验, 把海表热通量、 海冰和海洋热含量趋势结合起来, 导出海洋热能传输, 并与 RAPID (快速气候变化-经向翻转环流和热通量阵列) 在大西洋 26°N 的观测结果进行了比较. AMIP6 模式模拟显示由于向大气散发的热量较少, 导出的热能传输较低. AMIP6 集合平均在大西洋 26°N 以北的热损失比 DEEPC 约低 10 W m–2, 热能传输比 RAPID 和 DEEPC 约低 0.30 PW (1 PW = 1015 W). 还研究了模式水平分辨率对海表热通量差异的影响. 结果表明, 通过提高分辨率, 可以改进 26°N 以北的大西洋海表热通量和大西洋 26°N 处的热能传输.
Similar content being viewed by others
References
Allan, R. P., C. L. Liu, N. G. Loeb, M. D. Palmer, M. Roberts, D. Smith, and P.-L. Vidale, 2014: Changes in global net radiative imbalance 1985–2012. Geophys. Res. Lett., 41(15), 5588–5597, https://doi.org/10.1002/2014GL060962.
Allison, L. C., M. D. Palmer, R. P. Allan, L. Hermanson, C. L. Liu, and D. M. Smith, 2020: Observations of planetary heating since the 1980s from multiple independent datasets. Environmental Research Communications, 2(10), 101001, https://doi.org/10.1088/2515-7620/abbb39.
Bao, Q., and Coauthors, 2020: CAS FGOALS-F3-H and CAS FGOALS-F3-L outputs for the high-resolution model inter-comparison project simulation of CMIP6. Atmos. Ocean. Sci. Lett., 13, 576–581, https://doi.org/10.1080/16742834.2020.1814675.
Barsugli, J. J., and D. S. Battisti, 1998: The basic effects of atmosphere-ocean thermal coupling on midlatitude variability. J. Atmos. Sci., 55, 477–493, https://doi.org/10.1175/1520-0469(1998)055<0477:TBEOAO>2.0.CO;2.
Boucher, O., S. Denvil, G. Levavasseur, A. Cozic, A. Caubel, M.-A. Foujols, F. Meurdesoif, and J. Ghattas, 2019a: IPSL IPSL-CM6A-ATM-HR model output prepared for CMIP6 HighResMIP. Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.2361.
Boucher, O., S. Denvil, G. Levavasseur, A. Cozic, A. Caubel, M.-A. Foujols, F. Meurdesoif, and J. Ghattas, 2019b: IPSL IPSL-CM6A-LR model output prepared for CMIP6 HighResMIP. Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.13803.
Boucher, O., and Coauthors, 2020: Presentation and evaluation of the IPSL-CM6A-LR climate model. Journal of Advances in Modeling Earth Systems, 12(7), e2019MS002010, https://doi.org/10.1029/2019MS002010.
Bryden, H. L, and S. Imawaki, 2001: Ocean heat transport. Ocean Circulation and Climate, G. Siedler et al., Eds., Academic Press, London, 455–474.
Bryden, H. L., W. E. Johns, B. A. King, G. McCarthy, E. L. Mcdonagh, B. I. Moat, and D. A. Smeed, 2020: Reduction in ocean heat transport at 26°N since 2008 cools the eastern subpolar gyre of the North Atlantic Ocean. J. Climate, 33(5), 1677–1689, https://doi.org/10.1175/JCLI-D-19-0323.1.
Caesar, L., G. D. McCarthy, D. J. R. Thornalley, N. Cahill, and S. Rahmstorf, 2021: Current Atlantic Meridional Overturning Circulation weakest in last millennium. Nature Geoscience, 14, 118–120, https://doi.org/10.1038/s41561-021-00699-z.
Cao, J., and Coauthors, 2018: The NUIST Earth System Model (NESM) version 3: Description and preliminary evaluation. Geoscientific Model Development, 11, 2975–2993, https://doi.org/10.5194/gmd-11-2975-2018.
Chelton, D. B., and S.-P. Xie, 2010: Coupled ocean-atmosphere interaction at oceanic mesoscales. Oceanography, 23(4), 52–69, https://doi.org/10.5670/oceanog.2010.05.
Chen, H., E. K. Schneider, and Z. W. Zhu, 2021: Internal atmospheric variability of net surface heat flux in reanalyses and CMIP5 AMIP simulations. International Journal of Climatology, 42, 63–80, https://doi.org/10.1002/joc.7232.
Cheng, L. J., K. E. Trenberth, J. Fasullo, T. Boyer, J. Abraham, and J. Zhu, 2017: Improved estimates of ocean heat content from 1960 to 2015. Science Advances, 3(3), e1601545, https://doi.org/10.1126/sciadv.1601545.
Cheng, L. J., K. E. Trenberth, J. T. Fasullo, M. Mayer, M. Balmaseda, and J. Zhu, 2019: Evolution of ocean heat content related to ENSO. J. Climate, 32(12), 3529–3556, https://doi.org/10.1175/JCLI-D-18-0607.1.
Cherchi, A., and Coauthors, 2019: Global mean climate and main patterns of variability in the CMCC-CM2 coupled model. Journal of Advances in Modeling Earth Systems, 11(1), 185–209, https://doi.org/10.1029/2018MS001369.
Colfescu, I., and E. K. Schneider, 2020: Decomposition of the Atlantic multidecadal variability in a historical climate simulation. J. Climate, 33, 4229–4254, https://doi.org/10.1175/JCLI-D-18-0180.1.
Condron, A., and I. A. Renfrew, 2013: The impact of polar mesoscale storms on northeast Atlantic Ocean circulation. Nature Geoscience, 6, 34–37, https://doi.org/10.1038/ngeo1661.
Cronin, M. F., and Coauthors, 2019: Air-sea fluxes with a focus on heat and momentum. Frontiers in Marine Science, 6, 430, https://doi.org/10.3389/fmars.2019.00430.
Cuesta-Valero, F. J., A. García-García, H. Beltrami, J. F. González-Rouco, and E. García-Bustamante, 2021: Long-term global ground heat flux and continental heat storage from geothermal data. Climate of the Past, 17, 451–468, https://doi.org/10.5194/cp-17-451-2021.
Danabasoglu, G., and Coauthors, 2020: The Community Earth System Model Version 2 (CESM2). Journal of Advances in Modeling Earth Systems, 12(2), e2019MS001916, https://doi.org/10.1029/2019MS001916.
Delworth, T. L., and R. J. Greatbatch, 2000: Multidecadal thermohaline circulation variability driven by atmospheric surface flux forcing. J. Climate, 13, 1481–1495, https://doi.org/10.1175/1520-0442(2000)013<1481:MTCVDB>2.0.CO;2.
Demory, M. E., P. L. Vidale, M. J. Roberts, P. Berrisford, J. Strachan, R. Schiemann, and M. S. Mizielinski, 2014: The role of horizontal resolution in simulating drivers of the global hydrological cycle. Climate Dyn., 42(7–8), 2201–2225, https://doi.org/10.1007/s00382-013-1924-4.
Dix, M., and Coauthors, 2019: CSIRO-ARCCSS ACCESS-CM2 model output prepared for CMIP6 CMIP AMIP. Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.4239.
Dong, B. W., and R. T. Sutton, 2005: Mechanism of interdecadal thermohaline circulation variability in a coupled ocean-atmosphere GCM. J. Climate, 18, 1117–1135, https://doi.org/10.1175/JCLI3328.1.
Donohoe, A., J. Marshall, D. Ferreira, and D. Mcgee, 2013: The relationship between ITCZ location and Cross-Equatorial atmospheric heat transport: From the seasonal cycle to the last glacial maximum. J. Climate, 26(11), 3597–3618, https://doi.org/10.1175/JCLI-D-12-00467.1.
Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5), 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016.
Frierson, D. M. W., and Y.-T. Hwang, 2012: Extratropical influence on ITCZ shifts in slab ocean simulations of global warming. J. Climate, 25(2), 720–733, https://doi.org/10.1175/JCLI-D-11-00116.1.
Ganachaud, A., and C. Wunsch, 2003: Large-scale ocean heat and freshwater transports during the world ocean circulation experiment. J. Climate, 16(4), 696–705, https://doi.org/10.1175/1520-0442(2003)016<0696:LSOHAF>2.0.CO;2.
Gelaro, R., and Coauthors, 2017: The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J. Climate, 30(14), 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1.
Haarsma, R. J., and Coauthors, 2016: High resolution model intercomparison project (HighResMIP v1.0) for CMIP6. Geoscientific Model Development, 9(11), 4185–4208, https://doi.org/10.5194/gmd-9-4185-2016.
He, B., and Coauthors, 2020: CAS FGOALS-f3-L model datasets for CMIP6 GMMIP Tier-1 and Tier-3 experiments. Adv. Atmos. Sci., 37(1), 18–28, https://doi.org/10.1007/s00376-019-9085-y.
Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146(730), 1999–2049, https://doi.org/10.1002/qj.3803.
Hirschi, J. J.-M., and Coauthors, 2020: The Atlantic meridional overturning circulation in high-resolution models. J. Geophys. Res., 125(4), e2019JC015522, https://doi.org/10.1029/2019JC015522.
Holdsworth, A. M., and P. G. Myers, 2015: The influence of high-frequency atmospheric forcing on the circulation and deep convection of the Labrador Sea. J. Climate, 28, 4980–4996, https://doi.org/10.1175/JCLI-D-14-00564.1.
Hyder, P., and Coauthors, 2018: Critical Southern Ocean climate model biases traced to atmospheric model cloud errors. Nature Communications, 9, 3625, https://doi.org/10.1038/s41467-018-05634-2.
Jansen, M. F., 2017: Glacial ocean circulation and stratification explained by reduced atmospheric temperature. Proceedings of the National Academy of Sciences of the United States of America, 114, 45–50, https://doi.org/10.1073/pnas.1610438113.
Johns, W. E., and Coauthors, 2011: Continuous, array-based estimates of Atlantic Ocean heat transport at 26.5°N. J. Climate, 24(10), 2429–2449, https://doi.org/10.1175/2010JCLI3997.1.
Josey, S. A., S. Gulev, and L. S. Yu, 2013: Exchanges through the ocean surface. International Geophysics, 103, 115–140, https://doi.org/10.1016/B978-0-12-391851-2.00005-2.
Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteorol. Soc. Japan, 93, 5–48, https://doi.org/10.2151/jmsj.2015-001.
Kang, S. M., Y. Shin, and S.-P. Xie, 2018: Extratropical forcing and tropical rainfall distribution: Energetics framework and ocean ekman advection. npj Climate and Atmospheric Science, 1, 20172, https://doi.org/10.1038/s41612-017-0004-6.
Kato, S., and Coauthors, 2013: Surface irradiances consistent with CERES-derived top-of-atmosphere shortwave and long-wave irradiances. J. Climate, 26(9), 2719–2740, https://doi.org/10.1175/JCLI-D-12-00436.1.
Kawai, H., S. Yukimoto, T. Koshiro, N. Oshima, T. Tanaka, H. Yoshimura, and R. Nagasawa, 2019: Significant improvement of cloud representation in the global climate model MRI-ESM2. Geoscientific Model Development, 12, 2875–2897, https://doi.org/10.5194/gmd-12-2875-2019.
Koenigk, T., and L. Brodeau, 2014: Ocean heat transport into the Arctic in the twentieth and twenty-first century in EC-Earth. Climate Dyn., 42, 3101–3120, https://doi.org/10.1007/s00382-013-1821-x.
Krishnan, R., and Coauthors, 2019: The IITM Earth System Model (ESM): Development and future roadmap. Current Trends in the Representation of Physical Processes in Weather and Climate Models, D. A. Randall et al., Eds., Springer, 183–195, https://doi.org/10.1007/978-981-13-3396-5_9.
Kwon, Y.-O., and C. Frankignoul, 2012: Stochastically-driven multidecadal variability of the Atlantic meridional overturning circulation in CCSM3. Climate Dyn., 38, 859–876, https://doi.org/10.1007/s00382-011-1040-2.
Liang, X. F., and L. S. Yu, 2016: Variations of the global net air-sea heat flux during the “Hiatus” period (2001–10). J. Climate, 29(10), 3647–3660, https://doi.org/10.1175/JCLI-D15-0626.1.
Lin, Y. L., and Coauthors, 2020: Community Integrated Earth System Model (CIESM): Description and evaluation. Journal of Advances in Modeling Earth Systems, 12(8), e2019MS002036, https://doi.org/10.1029/2019MS002036.
Liu, C. L., and Coauthors, 2015: Combining satellite observations and reanalysis energy transports to estimate global net surface energy fluxes 1985–2012. J. Geophy. Res., 120(18), 9374–9389, https://doi.org/10.1002/2015JD023264.
Liu, C. L., and Coauthors, 2017: Evaluation of satellite and reanalysis-based global net surface energy flux and uncertainty estimates. J. Geophy. Res., 122(12), 6250–6272, https://doi.org/10.1002/2017JD026616.
Liu, C. L., and Coauthors, 2020: Variability in the global energy budget and transports 1985–2017. Climate Dyn., 55, 3381–3396, https://doi.org/10.1007/s00382-020-05451-8.
Liu, C., and R. Allan, 2022: Reconstructions of the radiation fluxes at the top of atmosphere and net surface energy flux: DEEP-C Version 5.0. University of Reading. Dataset. https://doi.org/10.17864/1947.000347.
Loeb, N. G., J. M. Lyman, G. C. Johnson, R. P. Allan, D. R. Doelling, T. Wong, B. J. Soden, and G. L. Stephens, 2012: Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent within uncertainty. Nature Geoscience, 5, 110–113, https://doi.org/10.1038/ngeo1375.
Loeb, N. G., H. L. Wang, A. N. Cheng, S. Kato, J. T. Fasullo, K.-M. Xu, and R. P. Allan, 2016: Observational constraints on atmospheric and oceanic cross-equatorial heat transports: Revisiting the precipitation asymmetry problem in climate models. Climate Dyn., 46, 3239–3257, https://doi.org/10.1007/s00382-015-2766-z.
Lumpkin, R., and K. Speer, 2007: Global ocean meridional overturning. J. Phys. Oceanogr., 37, 2550–2562, https://doi.org/10.1175/JPO3130.1.
Macdonald, A. M., 1998: The global ocean circulation: A hydrographic estimate and regional analysis. Progress in Oceanography, 41, 281–382, https://doi.org/10.1016/S0079-6611(98)00020-2.
Mayer, M., and L. Haimberger, 2012: Poleward atmospheric energy transports and their variability as evaluated from ECMWF reanalysis data. J. Climate, 25(2), 734–752, https://doi.org/10.1175/JCLI-D-11-00202.1.
Mayer, M., L. Haimberger, J. M. Edwards, and P. Hyder, 2017: Toward consistent diagnostics of the coupled atmosphere and ocean energy budgets. J. Climate, 30(22), 9225–9246, https://doi.org/10.1175/JCLI-D-17-0137.1.
Mayer, M., M. Alonso Balmaseda, L. Haimberger, 2018: Unprecedented 2015/2016 Indo-Pacific heat transfer speeds up tropical pacific heat recharge. Geophys. Res. Lett., 45(7), 3274–3284, https://doi.org/10.1002/2018GL077106.
Mayer, M., and Coauthors, 2019: An improved estimate of the coupled arctic energy budget. J. Climate, 32, 7915–7934, https://doi.org/10.1175/JCLI-D-19-0233.1.
Mayer, J., M. Mayer, and L. Haimberger, 2021: Consistency and homogeneity of atmospheric energy, moisture, and mass budgets in ERA5. J. Climate, 34(10), 3955–3974, https://doi.org/10.1175/JCLI-D-20-0676.1.
Mayer, J., M. Mayer, L. Haimberger, and C. Liu, 2022: Comparison of surface energy fluxes from global to local scale. J. Climate, https://doi.org/10.1175/JCLI-D-21-0598.1.
Mignac, D., D. Ferreira, and K. Haines, 2018: South Atlantic meridional transports from NEMO-based simulations and reanalyses. Ocean Science, 14, 53–68, https://doi.org/10.5194/os-14-53-2018.
Moreno-Chamarro, E., and Coauthors, 2022: Impact of increased resolution on long-standing biases in HighResMIP-PRIMAVERA climate models. Geoscientific Model Development, 15, 269–289, https://doi.org/10.5194/gmd-15-269-2022.
Putrasahan, D. A., A. J. Miller, and H. Seo, 2013: Isolating mesoscale coupled ocean-atmosphere interactions in the Kuroshio Extension region. Dyn. Atmos. Oceans, 63, 60–78, https://doi.org/10.1016/j.dynatmoce.2013.04.001.
Rahmstorf, S., and A. Ganopolski, 1999: Long-term global warming scenarios computed with an efficient coupled climate model. Climatic Change, 43, 353–367, https://doi.org/10.1023/A:1005474526406.
Roberts, M. J., H. T. Hewitt, P. Hyder, D. Ferreira, S. A. Josey, M. Mizielinski, and A. Shelly, 2016: Impact of ocean resolution on coupled air-sea fluxes and large-scale climate. Geophys. Res. Lett., 43(19), 10 430–10 438, https://doi.org/10.1002/2016GL070559.
Roberts, C. D., M. D. Palmer, R. P. Allan, D. G. Desbruyeres, P. Hyder, C. Liu, and D. Smith, 2017: Surface flux and ocean heat transport convergence contributions to seasonal and interannual variations of ocean heat content. J. Geophy. Res., 122, 726–744, https://doi.org/10.1002/2016JC012278.
Rong, X. Y., 2019: CAMS CAMS-CSM1.0 model output prepared for CMIP6 ScenarioMIP. Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.11004.
Rong, X. Y., 2020: CAMS CAMS-CSM1.0 model output prepared for CMIP6 HighResMIP. Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.11003.
Sellar, A. A., and Coauthors, 2019: UKESM1: Description and evaluation of the U.K. earth system model. Journal of Advances in Modeling Earth Systems, 11, 4513–4558, https://doi.org/10.1029/2019MS001739.
Senior, C. A., and Coauthors, 2016: Idealized climate change simulations with a high-resolution physical model: HadGEM3-GC2. Journal of Advances in Modeling Earth Systems, 8(2), 813–830, https://doi.org/10.1002/2015MS000614.
Serreze, M. C., and R. G. Barry, 2011: Processes and impacts of Arctic amplification: A research synthesis. Global and Planetary Change, 77, 85–96, https://doi.org/10.1016/j.gloplacha.2011.03.004.
Smeed, D., G. McCarthy, D. Rayner, B. I. Moat, W. E. Johns, M. O. Baringer, and C. S. Meinen, 2017: Atlantic meridional overturning circulation observed by the RAPID-MOCHA-WBTS (RAPID-Meridional Overturning Circulation and Heat-flux Array-Western Boundary Time Series) array at 26N from 2004 to 2017. British Oceanographic Data Centre-Natural Environment Research Council, https://doi.org/10.5285/5acfd143-1104-7b58-e053-6c86abc0d94b.
Swart, N. C., and Coauthors, 2019: The Canadian Earth System Model version 5 (CanESM5.0.3). Geoscientific Model Development, 12, 4823–4873, https://doi.org/10.5194/gmd-12-4823-2019.
Talley, L. D., 2003: Shallow, intermediate, and deep overturning components of the global heat budget. J. Phys. Oceanogr., 33, 530–560, https://doi.org/10.1175/1520-0485(2003)033<0530:SIADOC>2.0.CO;2.
Tatebe, H., and Coauthors, 2019: Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6. Geoscientific Model Development, 12, 2727–2765, https://doi.org/10.5194/gmd-12-2727-2019.
Terai, C. R., P. M. Caldwell, S. A. Klein, Q. Tang, and M. L. Branstetter, 2018: The atmospheric hydrologic cycle in the ACME v0.3 model. Climate Dyn., 50(9–10), 3251–3279, https://doi.org/10.1007/s00382-017-3803-x.
Trenberth, K. E., 1991: Climate diagnostics from global analyses: Conservation of mass in ECMWF analyses. J. Climate, 4, 707–722, https://doi.org/10.1175/1520-0442(1991)004<0707:CDFGAC>2.0.CO;2.
Trenberth, K. E., and A. Solomon, 1994: The global heat balance: Heat transports in the atmosphere and ocean. Climate Dyn., 10(3), 107–134, https://doi.org/10.1007/BF00210625.
Trenberth, K. E., and J. T. Fasullo, 2017: Atlantic meridional heat transports computed from balancing Earth’s energy locally. Geophys. Res. Lett., 44, 1919–1927, https://doi.org/10.1002/2016GL072475.
Trenberth, K. E., and J. T. Fasullo, 2018: Applications of an updated atmospheric energetics formulation. J. Climate, 31, 6263–6279, https://doi.org/10.1175/JCLI-D-17-0838.
Trenberth, K. E., and Y. X. Zhang, 2019: Observed interhemispheric meridional heat transports and the role of the Indonesian throughflow in the Pacific Ocean. J. Climate, 32, 8523–8536, https://doi.org/10.1175/JCLI-D-19-0465.1.
Trenberth, K. E., J. T. Fasullo, and J. Kiehl, 2009: Earth’s global energy budget. Bull. Amer. Meteor. Soc., 90, 311–324, https://doi.org/10.1175/2008BAMS2634.1.
Trenberth, K. E., Y. X. Zhang, J. T. Fasullo, and L. J. Cheng, 2019: Observation-based estimates of global and basin ocean meridional heat transport time series. J. Climate, 32, 4567–4583, https://doi.org/10.1175/JCLI-D-18-0872.1.
Uotila, P., and Coauthors, 2019: An assessment of ten ocean reanalyses in the polar regions. Climate Dyn., 52(3–4), 1613–1650, https://doi.org/10.1007/s00382-018-4242-z.
Valdivieso, M., and Coauthors, 2015: An assessment of air-sea heat fluxes from ocean and coupled reanalyses. Climate Dyn., 49, 983–1008, https://doi.org/10.1007/s00382-015-2843-3.
Vannière, B., and Coauthors, 2019: Multi-model evaluation of the sensitivity of the global energy budget and hydrological cycle to resolution. Climate Dyn., 52(11), 6817–6846, https://doi.org/10.1007/s00382-018-4547-y.
Voldoire, A., and Coauthors, 2019: Evaluation of CMIP6 DECK experiments with CNRM-CM6-1,. Journal of Advances in Modeling Earth Systems, 11(7), 2177–2213, https://doi.org/10.1029/2019MS001683.
Volodin, E., and A. Gritsun, 2018: Simulation of observed climate changes in 1850–2014 with climate model INM-CM5,. Earth System Dynamics, 9, 1235–1242, https://doi.org/10.5194/esd-9-1235-2018.
Volodin, E., and Coauthors, 2019: INM INM-CM5-H model output prepared for CMIP6 HighResMIP. Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.14041.
Von Schuckmann, K., and Coauthors, 2016: An imperative to monitor Earth’s energy imbalance. Nature Climate Change, 6, 138–144, https://doi.org/10.1038/nclimate2876.
Von Schuckmann, K., and Coauthors, 2020: Heat stored in the Earth system: Where does the energy go. Earth System Science Data, 12, 2013–2041, https://doi.org/10.5194/essd-12-2013-2020.
Williams, K. D., and Coauthors, 2015: The Met Office Global Coupled model 2.0 (GC2) configuration. Geoscientific Model Development, 2, 1509–1524, https://doi.org/10.5194/gmd-8-1509-2015.
Wong, T., B. A. Wielicki, R. B. Lee III, G. L. Smith, K. A. Bush, and J. K. Willis, 2006: Reexamination of the observed decadal variability of the earth radiation budget using altitude-corrected ERBE/ERBS nonscanner WFOV data. J. Climate, 19(16), 4028–4040, https://doi.org/10.1175/JCLI3838.1.
Wu, T. W., and Coauthors, 2019: The Beijing Climate Center Climate System Model (BCC-CSM): The main progress from CMIP5 to CMIP6,. Geoscientific Model Development, 12, 1573–1600, https://doi.org/10.5194/gmd-12-1573-2019.
Wu, T. W., and Coauthors, 2021a: BCC-CSM2-HR: A high-resolution version of the Beijing Climate Center Climate System Model. Geoscientific Model Development, 14, 2977–3006, https://doi.org/10.5194/gmd-14-2977-2021.
Wu, Y., X. M. Zhai, and Z. M. Wang, 2016: Impact of synoptic atmospheric forcing on the mean ocean circulation. J. Climate, 29, 5709–5724, https://doi.org/10.1175/JCLI-D-15-0819.1.
Wu, Y., X. M. Zhai, and Z. M. Wang, 2017: Decadal-mean impact of including ocean surface currents in bulk formulas on surface air-sea fluxes and ocean general circulation. J. Climate, 30, 9511–9525, https://doi.org/10.1175/JCLI-D-17-0001.1.
Wu, Y., Z. M. Wang, C. Y. Liu, and X. Lin, 2020: Impacts of high-frequency atmospheric forcing on Southern Ocean circulation and Antarctic sea ice. Adv. Atmos. Sci., 37(5), 515–531, https://doi.org/10.1007/s00376-020-9203-x.
Wu, Y, Z. M. Wang, and C. Y. Liu, 2021b: Impacts of changed ice-ocean stress on the North Atlantic Ocean: Role of ocean surface currents. Frontiers in Marine Science, 8, 628892, https://doi.org/10.3389/fmars.2021.628892.
Yu, L., and Coauthors, 2013: Towards achieving global closure of ocean heat and freshwater budgets: Recommendations for advancing research in air-sea fluxes through collaborative activities. WCRP Informal/Series Rep. No.13/2013.
Yu, L. S., and R. A. Weller, 2007: Objectively analyzed air-sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Amer. Meteorol. Soc., 88(4), 527–540, https://doi.org/10.1175/BAMS-88-4-527.
Zhao, M., and Coauthors, 2018a: The GFDL global atmosphere and land model AM4.0/LM4.0: 1. Simulation characteristics with prescribed SSTs. Journal of Advances in Modeling Earth Systems, 10, 691–734, https://doi.org/10.1002/2017MS001208.
Zhao, M., and Coauthors, 2018b: NOAA-GFDL GFDL-CM4C192 model output prepared for CMIP6 HighResMIP. Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.2262.
Ziehn, T., and Coauthors, 2020: The Australian earth system model: ACCESS-ESM1.5,. Journal of Southern Hemisphere Earth Systems Science, 70, 193–214, https://doi.org/10.1071/ES19035.
Zuo, H., M. A. Balmaseda, S. Tietsche, K. Mogensen, and M. Mayer, 2019: The ECMWF operational ensemble reanalysis-analysis system for ocean and sea ice: A description of the system and assessment. Ocean Science, 15(3), 779–808, https://doi.org/10.5194/os-15-779-2019.
Acknowledgements
This work is supported by the National Natural Science Foundation of China (Grant No. 42075036), Fujian Key Laboratory of Severe Weather (Grant No. 2021KFKT02), and the scientific research start-up grant of Guangdong Ocean University (Grant No. R20001). Chunlei LIU is also supported by the University of Reading as a visiting fellow. Richard Allan is supported by the UK National Centre for Earth Observation Grant No. NE/RO16518/1. The DEEPC data are available at https://doi.org/10.17864/1947.000347, the RAPID data can be downloaded from https://rapid.ac.uk/rapidmoc/rapid_data/datadl.php, the ORAS5 data can be accessed from https://www.cen.uni-hamburg.de/icdc/data/ocean/easy-init-ocean/ecmwforas5.html, and the AMIP6 data are available from https://esgf-node.llnl.gov/projects/cmip6/. We acknowledge all teams and climate modeling groups for making their data available.
Author information
Authors and Affiliations
Corresponding author
Additional information
Article Highlights
• Surface heat loss from the AMIP6 ensemble mean north of 26°N in the Atlantic is about 10 W m−2 less than the observation.
• Area mean surface heat loss north of 26°N in the Atlantic increases by 5.5 W m−2 per degree increase in horizontal resolution.
• The resolution dependence of the net surface heat flux is primarily related to the latent heat flux component.
Rights and permissions
About this article
Cite this article
Liu, C., Yang, Y., Liao, X. et al. Discrepancies in Simulated Ocean Net Surface Heat Fluxes over the North Atlantic. Adv. Atmos. Sci. 39, 1941–1955 (2022). https://doi.org/10.1007/s00376-022-1360-7
Received:
Revised:
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1007/s00376-022-1360-7


