Abstract
The predictability of a coupled system composed of a coupled reduced-order extratropical ocean–atmosphere model forced by a low-order three-variable tropical recharge–discharge model is explored with emphasis on its long-term forecasting capabilities. Highly idealized ensemble forecasts are produced taking into account the uncertainties in the initial states of the system, with specific attention to the structure of the initial errors in the tropical model. Three main types of experiments are explored: with random perturbations along the three Lyapunov vectors of the tropical model; along the two dominant Lyapunov vectors; and along the first Lyapunov vector only. When perturbations are introduced along all vectors, forecasting biases develop even if in a perfect model framework and with known initial uncertainty properties. Theses biases are considerably reduced only when the perturbations are introduced along the dominant Lyapunov vector. Furthermore, this perturbation strategy allows a reduced mean square error to be obtained at long lead times of a few years, as well as reliable ensemble forecasts across the whole time range. These very counterintuitive findings further underline the importance of appropriately controlling the initial error structure in the tropics through data assimilation.
摘 要
本文探讨了由低阶三变量热带充放电模型驱动的降阶热带外海气耦合模式的可预报性, 重点研究其长期预测能力。 高度理想化的集合预报方法考虑了系统初始状态的不确定性, 并特别关注热带模型中初始误差的结构。 本文主要开展了三类实验: 分别为在热带模型的三个 Lyapunov 向量方向上引入随机扰动; 在两个主导 Lyapunov 向量方向上引入扰动; 以及仅在第一个 Lyapunov 向量方向上引入扰动。 当在所有向量方向上引入扰动时, 即使在完美模型的框架下且初始不确定性特征已知, 预报偏差仍会增长。 只有仅在主导 Lyapunov 向量方向引入扰动时, 这些偏差才会大幅减小。 此外, 这种扰动策略能够在数年的长预报时效内获得减小的均方误差, 并在整个时间范围内获得可靠的集合预报。 这些非常“反常规”的发现进一步强调了通过数据同化适当控制热带地区初始误差结构的重要性。
References
Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N. C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air-sea interaction over the global oceans. J. Climate, 15, 2205–2231, https://doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.
An, S.-I., and F.-F. Jin, 2004: Nonlinearity and asymmetry of ENSO. J. Climate, 17, 2399–2412, https://doi.org/10.1175/1520-0442(2004)017<2399:NAAOE>2.0.CO;2.
Barsugli, J. J., and P. D. Sardeshmukh, 2002: Global atmospheric sensitivity to tropical SST anomalies throughout the Indo-Pacific Basin. J. Climate, 15(23), 3427–3442, https://doi.org/10.1175/1520-0442(2002)015<3427:GASTTS&line-break/>gt;2.0.CO;2.
Bouttier, F., L. Raynaud, O. Nuissier, and B. Ménétrier, 2016: Sensitivity of the AROME ensemble to initial and surface perturbations during HyMeX. Quart. J. Roy. Meteor. Soc., 142(S1), 390–403, https://doi.org/10.1002/qj.2622.
Bröcker, J., A. J. Charlton-Perez, and A. Weisheimer, 2023: A statistical perspective on the signal-to-noise paradox. Quart. J. Roy. Meteor. Soc., 149(752), 911–923, https://doi.org/10.1002/qj.4440.
Brönnimann, S., 2007: Impact of El Niño-Southern oscillation on European climate. Rev. Geophys., 45(3), RG3003, https://doi.org/10.1029/2006RG000199.
Buizza, R., 2010: Horizontal resolution impact on short- and long-range forecast error. Quart. J. Roy. Meteor. Soc., 136(649), 1020–1035, https://doi.org/10.1002/qj.613.
Carrassi, A., M. Bocquet, J. Demaeyer, C. Grudzien, P. Raanes, and S. Vannitsem, 2022: Data assimilation for chaotic systems. Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. IV), S. K. Park and L. Xu, Eds., Springer, 1–42, https://doi.org/10.1007/978-3-030-77722-7_1.
Charlton-Perez, A. J., J. Bröcker, T. N. Stockdale, and S. Johnson, 2019: When and where do ECMWF seasonal forecast systems exhibit anomalously low signal-to-noise ratio? Quart. J. Roy. Meteor. Soc., 145(725), 3466–3478, https://doi.org/10.1002/qj.3631.
Charron, M., G. Pellerin, L. Spacek, P. L. Houtekamer, N. Gagnon, H. L. Mitchell, and L. Michelin, 2010: Toward random sampling of model error in the Canadian ensemble prediction system. Mon. Wea. Rev., 138(5), 1877–1901, https://doi.org/10.1175/2009MWR3187.1.
De Cruz, L., J. Demaeyer, and S. Vannitsem, 2016: The modular arbitrary-order ocean-atmosphere model: MAOOAM v1.0. Geoscientific Model Development, 9(8), 2793–2808, https://doi.org/10.5194/gmd-9-2793-2016.
De Cruz, L., S. Schubert, J. Demaeyer, V. Lucarini, and S. Vannitsem, 2018: Exploring the Lyapunov instability properties of high-dimensional atmospheric and climate models. Nonlinear Processes in Geophysics, 25(2), 387–412, https://doi.org/10.5194/npg-25-387-2018.
Demaeyer, J., and S. Vannitsem, 2017: Stochastic parametrization of subgrid-scale processes in coupled ocean-atmosphere systems: Benefits and limitations of response theory. Quart. J. Roy. Meteor. Soc., 143(703), 881–896, https://doi.org/10.1002/qj.2973.
Demaeyer, J., and S. Vannitsem, 2018: Comparison of stochastic parameterizations in the framework of a coupled ocean-atmosphere model. Nonlinear Processes in Geophysics, 25(3), 605–631, https://doi.org/10.5194/npg-25-605-2018.
Duan, W. S., J. J. Ma, and S. Vannitsem, 2022: An ensemble forecasting method for dealing with the combined effects of the initial and model errors and a potential deep learning implementation. Mon. Wea. Rev., 150(11), 2959–2976, https://doi.org/10.1175/MWR-D-22-0007.1.
Fletcher, C. G., and C. Cassou, 2015: The dynamical influence of separate teleconnections from the pacific and Indian oceans on the northern annular mode. J. Climate, 28(20), 7985–8002, https://doi.org/10.1175/JCLI-D-14-00839.1.
Frogner, I.-L., and Coauthors, 2019: HarmonEPS—the HARMONIE ensemble prediction system. Wea. Forecasting, 34(6), 1909–1937, https://doi.org/10.1175/WAF-D-19-0030.1.
Guckenheimer, J., A. Timmermann, H. Dijkstra, and A. Roberts, 2017: (Un)predictability of strong El Niño events. Dynamics and Statistics of the Climate System, 2(1), dzx004, https://doi.org/10.1093/climsys/dzx004.
Jankov, I., and Coauthors, 2017: A performance comparison between multiphysics and stochastic approaches within a North American RAP ensemble. Mon. Wea. Rev., 145(4), 1161–1179, https://doi.org/10.1175/MWR-D-16-0160.1.
Jin, F.-F., 1996: Tropical ocean-atmosphere interaction, the Pacific cold tongue, and the El Niño-Southern oscillation. Science, 274, 76–78, https://doi.org/10.1126/science.274.5284.76.
Jin, F.-F., 1997: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811–829, https://doi.org/10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2.
Kumar, A., P. T. Peng, and M. Y. Chen, 2014: Is there a relationship between potential and actual skill? Mon. Wea. Rev., 142(6), 2220–2227, https://doi.org/10.1175/MWR-D-13-00287.1.
Kuptsov, P. V., and U. Parlitz, 2012: Theory and computation of covariant Lyapunov vectors. Journal of Nonlinear Science, 22, 727–762, https://doi.org/10.1007/s00332-012-9126-5.
Leutbecher, M., and T. N. Palmer, 2008: Ensemble forecasting. J. Comput. Phys., 227(7), 3515–3539, https://doi.org/10.1016/j.jcp.2007.02.014.
Lorenz, E. N., 1982: Atmospheric predictability experiments with a large numerical model. Tellus A: Dynamic Meteorology and Oceanography, 34, 505–513, https://doi.org/10.3402/tel-lusa.v34i6.10836.
Marsigli, C., A. Montani, and T. Paccagnella, 2014: Perturbation of initial and boundary conditions for a limited-area ensemble: Multi-model versus single-model approach. Quart. J. Roy. Meteor. Soc., 140(678), 197–208, https://doi.org/10.1002/qj.2128.
Mayer, B., A. Düsterhus, and J. Baehr, 2021: When does the Lorenz 1963 model exhibit the signal-to-noise paradox? Geophys. Res. Lett., 48(4), e2020GL089283, https://doi.org/10.1029/2020GL089283.
Nicolis, C., 2003: Dynamics of model error: Some generic features. J. Atmos. Sci., 60(17), 2208–2218, https://doi.org/10.1175/1520-0469(2003)060<2208:DOMESG>2.0.CO;2.
Nicolis, C., 2007: Dynamics of model error: The role of the boundary conditions. J. Atmos. Sci., 64(1), 204–215, https://doi.org/10.1175/JAS3806.1.
Nicolis, G., 1995: Introduction to Nonlinear Science. Cambridge University Press, 254 pp, https://doi.org/10.1017/CBO9781139170802.
Ollinaho, P., and Coauthors, 2017: Towards process-level representation of model uncertainties: Stochastically perturbed parametrizations in the ECMWF ensemble. Quart. J. Roy. Meteor. Soc., 143(702), 408–422, https://doi.org/10.1002/qj.2931.
O’Reilly, C. H., A. Weisheimer, T. Woollings, L. J. Gray, and D. MacLeod, 2019: The importance of stratospheric initial conditions for winter North Atlantic Oscillation predictability and implications for the signal-to-noise paradox. Quart. J. Roy. Meteor. Soc., 145(718), 131–146, https://doi.org/10.1002/qj.3413.
Orrell, D., L. Smith, J. Barkmeijer, and T. N. Palmer, 2001: Model error in weather forecasting. Nonlinear Processes in Geophysics, 8(6), 357–371, https://doi.org/10.5194/npg-8-357-2001.
Palmer, T. N., G. J. Shutts, R. Hagedorn, F. J. Doblas-Reyes, T. Jung, and M. Leutbecher, 2005: Representing model uncertainty in weather and climate prediction. Annual Review of Earth and Planetary Sciences, 33, 163–193, https://doi.org/10.1146/annurev.earth.33.092203.122552.
Penny, S. G., E. Bach, K. Bhargava, C.-C. Chang, C. Da, L. Sun, and T. Yoshida, 2019: Strongly coupled data assimilation in multiscale media: Experiments using a quasi-geostrophic coupled model. Journal of Advances in Modeling Earth Systems, 11, 1803–1829, https://doi.org/10.1029/2019MS001652.
Philander, S. G., 1990: El Niño, La Nina, and the Southern Oscillation. Academic Press.
Pires, C., R. Vautard, and O. Talagrand, 1996: On extending the limits of variational assimilation in nonlinear chaotic systems. Tellus A: Dynamic Meteorology and Oceanography, 48(1), 96–121, https://doi.org/10.3402/tellusa.v48i1.11634.
Privé, N. C., and R. M. Errico, 2013: The role of model and initial condition error in numerical weather forecasting investigated with an observing system simulation experiment. Tellus A: Dynamic Meteorology and Oceanography, 65(1), 21740, https://doi.org/10.3402/tellusa.v65i0.21740.
Roberts, A., J. Guckenheimer, E. Widiasih, A. Timmermann, and C. K. R. T. Jones, 2016: Mixed-mode oscillations of El Niño-Southern Oscillation. J. Atmos. Sci., 73, 1755–1766, https://doi.org/10.1175/JAS-D-15-0191.1.
Schemm, S., G. Rivière, L. M. Ciasto, and C. Li, 2018: Extratropical cyclogenesis changes in connection with tropospheric ENSO teleconnections to the North Atlantic: Role of stationary and transient waves. J. Atmos. Sci., 75, 3943–3964, https://doi.org/10.1175/JAS-D-17-0340.1.
Senan, R., M. A. Balmaseda, F. Molteni, T. N. Stockdale, A. Weisheimer, S. Johnson, and C. D. Roberts, 2024: The relative role of Indian and Pacific tropical heating as seasonal predictability drivers for the north Atlantic oscillation. Journal of Geophysical Research: Atmospheres, 129(18), e2024JD041233, https://doi.org/10.1029/2024JD041233.
Smith, D. M., and Coauthors, 2020: North Atlantic climate far more predictable than models imply. Nature, 583, 796–800, https://doi.org/10.1038/s41586-020-2525-0.
Stan, C., D. M. Straus, J. S. Frederiksen, H. Lin, E. D. Maloney, and C. Schumacher, 2017: Review of tropical-extratropical teleconnections on intraseasonal time scales. Rev. Geophys., 55(4), 902–937, https://doi.org/10.1002/2016RG000538.
Straus, D. M., D. I. V. Domeisen, S.-J. Lock, F. Molteni, and P. Yadav, 2023: Intrinsic predictability limits arising from Indian Ocean Madden-Julian oscillation (MJO) heating: Effects on tropical and extratropical teleconnections. Weather and Climate Dynamics, 4(4), 1001–1018, https://doi.org/10.5194/wcd-4-1001-2023.
Swanson, K., R. Vautard, and C. Pires, 1998: Four-dimensional variational assimilation and predictability in a quasigeostrophic model. Tellus A: Dynamic Meteorology and Oceanography, 50(4), 369–390, https://doi.org/10.3402/tellusa.v50i4.14540.
Timmermann, A., F.-F. Jin, and J. Abshagen, 2003: A nonlinear theory for El Niño bursting. J. Atmos. Sci., 60, 152–165, https://doi.org/10.1175/1520-0469(2003)060<0152:ANTFEN>2.0.CO;2.
Tondeur, M., A. Carrassi, S. Vannitsem, and M. Bocquet, 2020: On temporal scale separation in coupled data assimilation with the ensemble Kalman filter. Journal of Statistical Physics, 179, 1161–1185, https://doi.org/10.1007/s10955-020-02525-z.
Vannitsem, S., 2015: The role of the ocean mixed layer on the development of the North Atlantic Oscillation: A dynamical system’s perspective. Geophys. Res. Lett., 42(20), 8615–8623, https://doi.org/10.1002/2015GL065974.
Vannitsem, S., 2017: Predictability of large-scale atmospheric motions: Lyapunov exponents and error dynamics. Chaos, 27, 032101, https://doi.org/10.1063/1.4979042.
Vannitsem, S., 2023: Impact of tropical teleconnections on the long-range predictability of the atmosphere at midlatitudes: A reduced-order multi-scale model perspective. Journal of Physics: Complexity, 4(4), 045006, https://doi.org/10.1088/2632-072X/ad04e8.
Vannitsem, S., and Z. Toth, 2002: Short-term dynamics of model errors. J. Atmos. Sci., 59(17), 2594–2604, https://doi.org/10.1175/1520-0469(2002)059<2594:STDOME>2.0.CO;2.
Vannitsem, S., and V. Lucarini, 2016: Statistical and dynamical properties of covariant Lyapunov vectors in a coupled atmosphere-ocean model–multiscale effects, geometric degeneracy, and error dynamics. Journal of Physics A: Mathematical and Theoretical, 49(22), 224001, https://doi.org/10.1088/1751-8113/49/22/224001.
Vannitsem, S., J. Demaeyer, and M. Ghil, 2021: Extratropical low-frequency variability with ENSO forcing: A reduced-order coupled model study. Journal of Advances in Modeling Earth Systems, 13(6), e2021MS002530, https://doi.org/10.1029/2021MS002530.
Vannitsem, S., J. Demaeyer, L. De Cruz, and M. Ghil, 2015: Low-frequency variability and heat transport in a low-order nonlinear coupled ocean-atmosphere model. Physica D: Nonlinear Phenomena, 309, 71–85, https://doi.org/10.1016/j.physd.2015.07.006.
Acknowledgements
We thank André DÜSTERHUS, the second anonymous reviewer, and the technical editor, Ling JIN, for their constructive comments. This work was supported by the National Key R&D Program of China (Grant No. 2023YFF0805100).
Author information
Authors and Affiliations
Corresponding author
Additional information
Article Highlights
• Forecasting biases are induced in the extratropics due to the tropical forcing even with a perfect model and known initial uncertainties.
• Perturbing along the unstable directions in the tropics improves the long-term forecast of the forced extratropical component.
• The equality of the potential skill and the actual skill is only ensured provided these biases are considerably reduced.
Rights and permissions
About this article
Cite this article
Vannitsem, S., Duan, W. A Note on the Role of the Initial Error Structure in the Tropics on the Seasonal-to-Decadal Forecasting Skill in the Extratropics. Adv. Atmos. Sci. 43, 157–169 (2026). https://doi.org/10.1007/s00376-025-4521-7
Received:
Revised:
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1007/s00376-025-4521-7