Skip to main content
Log in

Changes of total versus extreme precipitation and dry periods until the end of the twenty-first century: statistical assessments for the Mediterranean area

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Changes of total precipitation, extreme precipitation, and dry periods in the Mediterranean area until the end of the twenty-first century have been assessed by means of statistical downscaling. Generalized linear models using predictors describing the large-scale atmospheric circulation as well as thermodynamic conditions have been applied for the projections under A1B and B1 scenario assumptions. The results mostly point to reductions of total and extreme precipitation over the western and central-northern Mediterranean areas in summer and autumn and to increases in winter. In contrast, over the eastern Mediterranean area widespread precipitation increases are assessed in summer and autumn, whereas reductions dominate in winter. In spring, total and extreme precipitation decreases prevail over the whole Mediterranean area. Total and extreme precipitation decreases mostly come along with increases of the maximum dry period length. Vice versa precipitation increases are commonly accompanied by a shortening of the maximum dry period length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from €39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ben-Gai T, Bitan A, Manes A, Alpert P, Rubin S (1998) Spatial and temporal changes in rainfall frequency distribution patterns in Israel. Theor Appl Climatol 61:177–190

    Article  Google Scholar 

  • Beniston M, Stephenson D, Christensen O, Ferro C, Frei C, Goyette S, Halsnaes K, Holt T, Jylhä K, Koffi B, Palutikof J, Schöll R, Semmler T, Woth K (2007) Future extreme events in European climate: an exploration of regional climate model projections. Clim Chang 81:71–95

    Article  Google Scholar 

  • Brunetti M, Maugeri M, Nanni T (2001) Changes in total precipitation, rainy days and extreme events in northeastern Italy. Int J Climatol 21:861–871

    Article  Google Scholar 

  • Brunetti M, Maugeri M, Monti F, Nanni T (2004) Changes in daily precipitation frequency and distribution in Italy over the last 120 years. J Geophys Res 109:D05102. doi:10.1029/2003JD004296

    Article  Google Scholar 

  • Conte M, Giuffrida S, Tedesco S (1989) The Mediterranean oscillation: impact on precipitation and hydrology in Italy. Proceedings of the Conference on Climate and Water, vol. 1. Publications of Academy of Finland, Helsinki, pp 121–137

    Google Scholar 

  • Dai A (2011) Drought under global warming: a review. Wiley Interdiscip Rev Clim Chang 2:45–65. doi:10.1002/wcc.81

    Article  Google Scholar 

  • DiCiccio TJ, Efron B (1996) Bootstrap confidence intervals. Stat Sci 11:189–228

    Article  Google Scholar 

  • Duenkeloh A, Jacobeit J (2003) Circulation dynamics of Mediterranean precipitation variability 1948–1998. Int J Climatol 23:1843–1866

    Article  Google Scholar 

  • Emori S, Brown SJ (2005) Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate. Geophys Res Lett 32:L17706

    Article  Google Scholar 

  • Frei C, Schöll R, Fukutome S, Schmidli J, Vidale PL (2006) Future change of precipitation extremes in Europe: intercomparison of scenarios from regional climate models. J Geophys Res 111:D06105. doi:10.1029/2005JD005965

    Article  Google Scholar 

  • Gao X, Pal JS, Giorgi F (2006) Projected changes in mean and extreme precipitation over the Mediterranean region from high resolution double nested RCM simulations. Geophys Res Lett 33:L03706

    Article  Google Scholar 

  • Gibelin AL, Déqué M (2003) Anthropogenic climate change over the Mediterranean region simulated by a global variable resolution model. Clim Dyn 20:327–339

    Google Scholar 

  • Giorgi F (2006) Climate change hotspots. Geophys Res Lett 33:L08707. doi:10.1029/2006GL025734

    Article  Google Scholar 

  • Giorgi F, Coppola E (2009) Projections of 21st century climate over Europe. Eur Phys J 1:29–46, Web of Conferences

    Google Scholar 

  • Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean area. Glob Planet Chang 63:90–104

    Article  Google Scholar 

  • Gordon C, Cooper C, Senior CA, Banks HT, Gregory JM, Johns TC, Mitchell JFB, Wood RA (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16:147–168

    Article  Google Scholar 

  • Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded dataset of surface temperature and precipitation. J Geophys Res-Atmos 113:D20119. doi:10.1029/2008JD10201

    Article  Google Scholar 

  • Hertig E, Jacobeit J (2008) Assessments of Mediterranean precipitation changes for the 21st century using statistical downscaling techniques. Int J Climatol 28:1025–1045

    Article  Google Scholar 

  • Hertig E, Seubert S, Paxian A, Vogt G, Paeth H, Jacobeit J (2011) Statistical modeling of extreme precipitation for the Mediterranean area under future climate change. Int J Climatol

  • Hertig E, Paxian A, Vogt G, Seubert S, Paeth H, Jacobeit J (2012) Statistical and dynamical downscaling assessments of precipitation extremes in the Mediterranean area. Meteorol Z 21:61–77

    Article  Google Scholar 

  • Jansa A, Genoves A, Picornell MA, Campins J, Riosalido R, Carretero O (2001) Western Mediterranean cyclones and heavy rain. Part 2: statistical approach. Meteorol Appl 8:43–56

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Kharin V, Zwiers F (2005) Estimating extremes in transient climate change simulations. J Clim 18:1156–1173

    Article  Google Scholar 

  • Kistler R, Kalnay E, Collins W, Saha S, White G, Woollen J, Chelliah M, Ebisuzaki W, Kanamitsu M, Kousky V, van den Dool H, Jenne R, Fiorino M (2001) The NCEP/NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull Am Meteorol Soc 82:247–268

    Article  Google Scholar 

  • Lana X, Burgueño A (1997) Probabilities of repeated long dry episodes based on the Poisson distribution. An example for Catalonia (NE Spain). Theor Appl Climatol 60:111–120

    Article  Google Scholar 

  • Lana X, Burgueño A (2000) Some statistical characteristics of monthly and annual pluviometric irregularity of the Spanish Mediterranean coast. Theor Appl Climatol 65:79–97

    Article  Google Scholar 

  • Lionello P, Giorgi F (2007) Winter precipitation and cyclones in the Mediterranean region: future climate scenarios in a regional simulation. Adv Geosci 12:153–158

    Article  Google Scholar 

  • Lu J, Vecchi GA, Reichler T (2007) Expansion of the Hadley cell under global warming. Geophys Res Lett 34:L06805. doi:06810.01029/02006GL028443

    Article  Google Scholar 

  • Maheras P, Xoplaki E, Kutiel H (1999) Wet and dry monthly anomalies across the Mediterranean basin and their relationship with circulation, 1860–1990. Theor Appl Climatol 64:189–199

    Article  Google Scholar 

  • Mann HB, Whitney DR (1947) On a test whether one of two random variables is stochastically larger than the other. Ann Math Stat 18:50–60

    Article  Google Scholar 

  • McCullagh P, Nelder JA (1989) Generalized linear models. Monographs on statistics and applied probability 37. Chapman & Hall, London

    Google Scholar 

  • Meehl GA, Arblaster JM, Tebaldi C (2005) Understanding future patterns of precipitation extremes in climate model simulations. Geophys Res Lett 32:L18719. doi:10.1029/2005GL023680

    Article  Google Scholar 

  • Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao Z-C (2007) Global Climate Projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

    Google Scholar 

  • Moberg A, Jones PD, Lister D, Walther A, Brunet M, Jacobeit J, Alexander LV, Della-Marta P, Luterbacher J, Yiou P, Chen D, Klein Tank A, Saladié O, Sigró J, Aguilar E, Alexandersson H, Almarza C, Auer I, Barriendos M, Begert M, Bergström H, Böhm R, Butler CJ, Caesar J, Drebs A, Founda D, Gerstengarbe F-W, Micela G, Maugeri M, Österle H, Pandzic K, Petrakis M, Srnec L, Tolasz R, Tuomenvirta H, Werner PC, Linderholm H, Philipp A, Wanner H, Xoplaki E (2006) Indices for daily temperature and precipitation extremes in Europe analysed for the period 1901–2000. J Geophys Res-Atmos 111:D22106. doi:10.1029/2006JD007103

    Article  Google Scholar 

  • Myoung B, Nielsen-Gammon JW (2010) Sensitivity of monthly convective precipitation to environmental conditions. J Clim 23:166–188

    Article  Google Scholar 

  • Nakicenovic N, Swart R. (eds) (2000) Emissions scenarios 2000. Special Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, pp 570

  • Neelin JD, Münnich M, Su H, Meyerson JE, Holloway CE (2006) Tropical drying trends in global warming models and observations. Proc Natl Acad Sci 103:6110–6115

    Article  Google Scholar 

  • Nikulin G, Kjellström E, Hansson U, Strandberg G, Ullerstig A (2011) Evaluation and future projections of temperature, precipitation and wind extremes over Europe in an ensemble of regional climate simulations. Tellus 63A:41–55

    Google Scholar 

  • Oikonomou Ch, Flocas HA, Hatzaki M, Asimakopoulos DN, Giannakopoulos C (2008) Future changes in the occurrence of extreme precipitation events in eastern Mediterranean. Glob NEST J 10(2):255–262

    Google Scholar 

  • Palatella L, Miglietta MM, Paradisi P, Lionello P (2010) Climate change assessment for Mediterranean agricultural areas by statistical downscaling. Nat Hazards Earth Syst Sci 10:1647–1661

    Article  Google Scholar 

  • Philipp A, Della-Marta PM, Jacobeit J, Fereday DR, Jones PD, Moberg A, Wanner H (2007) Long term variability of daily North Atlantic–European pressure patterns since 1850 classified by simulated annealing clustering. J Clim 20(16):4065–4095

    Article  Google Scholar 

  • Pope V, Gallani ML, Rowntree PR, Stratton RA (2000) The impact of new physical parameterizations in the Hadley Centre climate model: HadAM3. Clim Dyn 16:123–146

    Article  Google Scholar 

  • Preisendorfer RW (1988) Principal component analysis in meteorology and oceanography. In: CD Mobly (ed.). Developments in atmospheric sciences, 17, 425 pp

  • Roeckner E, Baeuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzani E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM5. Part I: Model description. Max Planck Institute for Meteorology Report 349, Hamburg

  • Roeckner E, Brasseur GP, Giorgetta M, Jacob D, Jungclaus J, Reick C, Sillmann J (2006) Climate projections for the 21st century. Max Planck Institute for Meteorology, Hamburg

    Google Scholar 

  • Rowell DP, Jones RG (2006) Causes and uncertainty of future summer drying over Europe. Clim Dyn 27:281–299

    Article  Google Scholar 

  • Showalter AK (1953) A convective index as an indicator of cumulonimbus development. J Appl Meteorol 5:839–846

    Google Scholar 

  • Sillmann J, Roeckner E (2008) Indices of extreme events in projections of anthropogenic climate change. Clim Chang 86:83–104

    Article  Google Scholar 

  • Tebaldi C, Hayhoe K, Arblaster J, Meehl G (2006) Going to the extremes: an intercomparison of model-simulated historical and future changes in extreme events. Clim Chang 79:185–211

    Article  Google Scholar 

  • Vrac M, Naveau P (2007) Stochastic downscaling of precipitation: from dry events to heavy rainfalls. Water Resour Res 43:W07402

    Article  Google Scholar 

  • Wang G (2005) Agricultural drought in a future climate: results from 15 global climate models participating in the IPCC 4th Assessment. Clim Dyn 25:739–753

    Article  Google Scholar 

  • Weiß M, Flörke M, Menzel L, Alcamo J (2007) Model-based scenarios of Mediterranean droughts. Adv Geosci 12:145–151

    Article  Google Scholar 

  • Wilby RL, Wigley TML (2000) Precipitation predictors for downscaling: observed and general circulation model relationships. Int J Climatol 20:641–6 61

    Article  Google Scholar 

Download references

Acknowledgments

Financial support is provided by the DFG (German Research Foundation). We acknowledge the E-OBS dataset from the EU-FP6 project ENSEMBLES (http://ensembles-eu-metoffice.com) and the data providers in the ECA&D project (http://eca.knmi.nl).

Author information

Authors and Affiliations

Corresponding author

Correspondence to E. Hertig.

Appendix 1

Appendix 1

1.1 Calculation of convective indices

The Showalter Index (Showalter 1953) is used to describe convective instability and is calculated as follows:

$$ {\hbox{Showalter Index}} = {T_{{{5}00}}} - {\hbox{TLC}}{{\hbox{L}}_{{{5}00}}} $$
(1)

T 500: temperature at the 500 hPa level

TLCL500: temperature that an air parcel will achieve if it is lifted dry adiabatically from the 850 hPa level to its condensation level and then moist adiabatically to the 500 hPa level.

The difference between the 500 hPa temperature and the lifted air parcel temperature provides an estimate of the instability. It should be noted that the Showalter Index does not take into account the atmospheric conditions below the 850 hPa level. To calculate the Showalter Index from the reanalysis data and the GCM data, 850 hPa air temperature and 850 hPa relative humidity are used to calculate the dew point temperature, and from this the height of the condensation level at each grid box. The difference of the geopotential heights of the 500 and 850 hPa levels is used to obtain the absolute height of the air parcel lifting. The value of the moist adiabatic temperature gradient above the condensation level is readjusted in steps of 100 m uplift.

CIN, characterizing the presence of large- or small-scale lifting mechanisms, is represented by a proxy, following Myoung and Nielsen-Gammon (2010):

$$ {\hbox{CIN}} = T\left( {\hbox{inv}} \right)--{T_d}(s) $$
(2)

T d (s): dewpoint temperature at the surface

T(inv): virtual temperature at some level just above the mixed layer or within a capping.

According to Myoung and Nielsen-Gammon (2010), surface pressure values can be taken to obtain the associated best proxy levels for the calculation of the proxy of CIN. In the present study, the assumed best proxy level for each grid box of the predictor domain is determined by taking Table 1 in Myoung and Nielsen-Gammon (2010). Thus, for the calculation of CIN from the reanalysis data and the GCM output, surface dewpoint temperatures are required as well as surface pressure data (to obtain the best proxy level), and additionally specific humidity and air temperature of the best proxy level (for the calculation of the virtual temperature).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hertig, E., Seubert, S., Paxian, A. et al. Changes of total versus extreme precipitation and dry periods until the end of the twenty-first century: statistical assessments for the Mediterranean area. Theor Appl Climatol 111, 1–20 (2013). https://doi.org/10.1007/s00704-012-0639-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s00704-012-0639-5

Keywords