Skip to main content
Log in

A teleconnection study between oceanic oscillations and trends in precipitation extremes in the Paraíba do Sul River Basin

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

The waters of the Paraíba do Sul River supply around 15 million people, most of whom live in metropolitan regions of the state of Rio de Janeiro. Climate change alters its precipitation regime and can cause an increase in the occurrence of extreme hydrological events. Furthermore, the variability of precipitation can result from the combined effects of the surface conditions of the oceans and the variations in the dynamics of atmospheric systems. This work aims to detect possible changes in the climatic extremes of precipitation in the Paraíba do Sul hydrographic basin and to investigate evidences of correlation of these indices with the oceanic oscillations associated with the El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO) and Atlantic Multidecadal Oscillation (AMO). Results indicate that the northeast sector of the basin present trends of increase in the total annual precipitation, in the number of very humid days and in the occurrence of extreme events, in a space of time up to five days. The southwest sector, on the other hand, show decreasing trends in total annual precipitation, in the number of very humid days, but with an increase trend in the maximum amount of rainfall on five consecutive days. The central sector has characteristics of a transition zone. The correlation analyzes show that oceanic oscillation indices have a non-significant correlation with most annual extreme precipitation indices, except for La Niña (El Niño), that can increase (decrease) the number of consecutive dry days in the region. Besides, for austral autumn, La Niña (El Niño) can decrease (increase) the precipitation in the basin, and in austral winter, hot (cold) phase of AMO can decrease (increase) the precipitation. For austral spring, two teleconnections were found: hot (cold) phase of PDO can increase (decrease) the precipitation in the southwest region of the basin, and during El Niño (La Niña) years, negative (positive) precipitation anomalies tend to occur in the northeast sector of the basin, while positive (negative) anomalies appear in its southwest region. The wavelet spectrum of precipitation anomaly indicates significant values with low power that could be correlated with ENSO, corroborating the results of seasonal correlations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from €39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from South American Precipitation data provided by the NOAA/OAR/ESRL PSL, Boulder, Colorado, USA, from their Web site at https://psl.noaa.gov/data/gridded/tables/precipitation.html. This data set is for general public distribution.

Code availability

figure a

References

  • Abou Rafee S, Freitas E, Martins J et al (2020) Spatial trends of extreme precipitation events in the Paraná river basin. J Appl Meteorol Climatol 59:443–454. https://doi.org/10.1175/JAMC-D-19-0181.1

    Article  Google Scholar 

  • Adepitan JO, Falayi EO (2019) Variability changes of some climatology parameters of Nigeria using wavelet analysis. Scientific African 2:1–11

    Google Scholar 

  • Agência Nacional de Águas e Saneamento Básico (ANA) (2010) Previsão de eventos críticos na bacia do rio Paraíba do Sul, R 02 - Coleta de Dados. Engecorps, 285 p

  • Alexander L et al (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res 111(D5):1–22

    Google Scholar 

  • Almeida RAF, Nobre P, Haarsma RJ, Campos EJD (2007) Negative ocean-atmosphere feedback in the South Atlantic Convergence Zone. Geophys Res Lett 34:L18809. https://doi.org/10.1029/2007GL030401

    Article  Google Scholar 

  • Ávila A, Justino F, Aaron W, Bromwich D, Amorim M (2016) Recent precipitation trends, flash floods and landslides in southern Brazil. Environ Res Lett 11(11):1–13

    Google Scholar 

  • Ávila AD, Justino F, Lindemann DS, Rodrigues JM, Ferreira GR (2020) Climatological aspects and changes in temperature and precipitation extremes in Viçosa-Minas Gerais. An Acad Bras Ciênc 92(2). https://doi.org/10.1590/0001-3765202020190388

  • Bonnet SM, Dereczynski CP, Nunes A (2018) Caracterização sinótica e climatológica de eventos de chuva pós-frontal no Rio de Janeiro. Rev Brasil Meteorol 33(3):547–557

    Google Scholar 

  • Brasiliense CS, Dereczynski CP, Satyamurty P, Chou SC, da Silva Santos VR, Calado RN (2018) Synoptic analysis of an intense rainfall event in Paraíba do Sul river basin in southeast Brazil. Meteorol Appl 25(1):66–77

    Google Scholar 

  • Brasiliense CS, Dereczynski CP, Satyamurty P, Chou SC, Calado RN (2020) Climatologias da Temperatura do Ar e da Precipitação na Bacia do Rio Paraíba do Sul, Região Sudeste do Brasil. Anu Inst Geociênc 43(1):355–365. https://doi.org/10.11137/2020_1_355_365

  • Brito TT, Oliveira-Júnior JF, Lyra GB, Gois G, Zeri M (2017) Multivariate analysis applied to monthly rainfall over Rio de Janeiro state, Brazil. Meteorol Atmos Phys 129(5):469–478

    Google Scholar 

  • Cai W, Whetton PH, Karoly DJ (2003) The response of the Antarctic oscillation to increasing and stabilized atmospheric CO2. J Clim 16:1525–1538

    Google Scholar 

  • Cai W, McPhaden MJ, Grimm AM et al (2020) Climate impacts of the El Niño-Southern Oscillation on South America. Nat Rev Earth Environ 1:215–231. https://doi.org/10.1038/s43017-020-0040-3

    Article  Google Scholar 

  • Cardoso AO, Cataldi M (2012) Relações de índices climáticos e vazão de rios no Brasil. In: Congresso Brasileiro de Meteorologia, 17., 2012, Gramado. Anais... Rio de Janeiro: SBMET

  • Carpenedo CB, Ambrizzi T (2020) Anticiclone Subtropical do Atlântico Sul Associado ao Modo Anular Sul e Impactos Climáticos no Brasil. Rev Brasil Meteorol 35(4):605–613

    Google Scholar 

  • Carvalho JRP, Assad ED, de Oliveira AF, Pinto HS (2014) Annual maximum daily rainfall trends in the Midwest, Southeast and Southern Brazil in the last 71 years. Weather Clim Extrem 5(1):7–15

    Google Scholar 

  • Cataldi M, Assad LPF, Torres Junior AR, Alves JLD (2010) Estudo da influência das anomalias da TSM do Atlântico Sul extratropical na região da Confluência Brasil-Malvinas no regime hidrometeorológico de verão do Sul e Sudeste do Brasil. Rev Bras Meteorol 25:513–524. https://doi.org/10.1590/s0102-77862010000400010

    Article  Google Scholar 

  • CEIVAP (2006) Plano de Recursos Hídricos da Bacia do Rio Paraíba do Sul - Resumo

  • Chadwick R, Good P, Martin G, Rowell DP (2016) Large rainfall changes consistently projected over substantial areas of tropical land. Nat Clim Chang 6(2):177–181

    Google Scholar 

  • Chiessi CM, Mulitza S, Patzold J, Wefer G, Marengo JA (2009) Possible impact of the Atlantic Multidecal Oscillation on the South American Summer monsoon. Geophys Res Lett 36(L21707):5

    Google Scholar 

  • Capozzoli CR, Cardoso AO, Ferraz SRT (2017) Padrões de variabilidade de vazão de rios nas principais bacias brasileiras e associação com índices climáticos. Revista Brasileira de Meteorologia 32(02):243–254. https://doi.org/10.1590/0102-77863220006

  • Costa AS, dos Santos NA, Braga CC (2016) Rainfall diagnosis in different time scales in Maranhão using the wavelet transform. J Hyperspectral Remote Sens 6(6):295–304

    Google Scholar 

  • da Silva GAM, Drumond A, Ambrizzi T (2011) The impact of El Nino on South American summer climate during different phases of the Pacific Decadal Oscillation. Theor Appl Climatol 106:307–319

    Google Scholar 

  • Dereczynski CP, Oliveira JS, Machado CO (2009) Climatologia da precipitação no município do Rio de Janeiro. Rev Bras Meteorol 24(1):24–38

    Google Scholar 

  • Dereczynski CP, Luiz Silva W, Marengo JA (2013) Detection and projections of climate change in Rio de Janeiro, Brazil. Am J Clim Chang 2:25–33. https://doi.org/10.4236/ajcc.2013.21003

    Article  Google Scholar 

  • Deusdará-Leal KR, Cuartas LA, Zhang R, Mohor GS, de Castro Carvalho LV, Nobre CA, Mendiondo EM, Broedel E, Seluchi ME, dos Santos Alvalá RC (2020) Implications of the new operational rules for cantareira water system: re-reading the 2014–2016 water crisis. J Water Resour Prot 12:261–274. https://doi.org/10.4236/jwarp.2020.124016

    Article  Google Scholar 

  • Donat MG, Lowry AL, Alexander LV, O’Gorman PA, Maher N (2016) More extreme precipitation in the world’s dry and wet regions. Nat Clim Chang 6:508–513

    Google Scholar 

  • Dong B, Dai A (2015) The influence of the Interdecadal Pacific Oscillation on temperature and precipitation over the globe. Clim Dyn 45:2667–2681. https://doi.org/10.1007/s00382-015-2500-x

    Article  Google Scholar 

  • Dong S, Sun Y, Li C, Zhang X, Min SK, Kim YH (2021) Attribution of extreme precipitation with updated observations and CMIP6 simulations. J Clim 34:871–881

    Google Scholar 

  • Echer MPS, Echer E, Nordemann DJ, Rigozo NR, Prestes A (2008) Wavelet analysis of a centennial (1895–1994) southern Brazil rainfall series (Pelotas, 31°46’19”S; 52°20’33”W). Clim Chang 87(3–4):489–497

    Google Scholar 

  • Ferreira GR (2019) Eventos extremos de precipitação nas bacias hidrográficas dos rios Doce e Paraíba do Sul. Dissertação (Mestrado em Meteorologia Aplicada) - Universidade Federal de Viçosa / Gabriela Regina Ferreira. – Viçosa, MG, 47p

  • Figliuolo GC, Andreoli RV, Kayano MT et al (2020) The role of the Atlantic Multidecadal Oscillation precondition in the teleconnection of different El Niño-Southern Oscillation types and impacts on the 15°N–15°S South American sector precipitation. Int J Climatol 40:1943–1964

    Google Scholar 

  • Flantua SGA et al (2016) Climate variability and human impact in South America during the last 2000 years: Synthesis and perspectives from pollen records. Clim Past 12:483–523. https://doi.org/10.5194/cp-12-483-2016

    Article  Google Scholar 

  • Fyfe JC, Boer GJ, Flato GM (1999) The Arctic and Antarctic oscillations and their projected changes under global warming. Geophys Res Lett 26:1601–1604

    Google Scholar 

  • Garcia SR, Kayano MT (2008) Climatological aspects of Hadley, Walker and monsoon circulations in two phases of the Pacific Decadal Oscillation. Theoret Appl Climatol 91:117–127

    Google Scholar 

  • Garcia S, Kayano M (2010) Some evidence on the relationship between the South American monsoon and the Atlantic ITCZ. Theor Appl Climatol 99:29–38

    Google Scholar 

  • Grimm AM, Barros VR, Doyle ME (2000) Climate variability in southern South America associated with El Niño and La Niña events. J Clim 13:35–58

    Google Scholar 

  • Grimm AM, Tedeschi RG (2009) ENSO and extreme rainfall events in South America. J Clim 22(7):1589–1609. https://doi.org/10.1175/2008JCLI2429.1

    Article  Google Scholar 

  • Grimm AM, Saboia JPJ (2015) Interdecadal variability of the South American precipitation in the monsoon season. J Clim 28(2):755–775. https://doi.org/10.1175/JCLI-D-14-00046.1

    Article  Google Scholar 

  • Groisman PY, Knight RW, Easterling DR, Karl TR, Hegerl GC, Razuvaev VAN (2005) Trends in intense precipitation in the climate record. J Clim 18:1326–1350

    Google Scholar 

  • Hair JF, Anderson RE, Tatham RL, Black WC (2005) Análise multivariada de dados. 5.ed. Porto Alegre: Bookman, 593p

  • He Z, Dai A, Vuille M (2021) The joint impacts of Atlantic and Pacific multidecadal variability on South American precipitation and temperature. J Clim:1–55. https://doi.org/10.1175/JCLI-D-21-0081.1

  • Hua W, Dai A, Zhou L, Qin M, Chen H (2019) An externally forced decadal rainfall seesaw pattern over the Sahel and southeast Amazon. Geophys Res Lett 46:923–932. https://doi.org/10.1029/2018GL081406

    Article  Google Scholar 

  • IPCC - Intergovernmental Panel on Climate Change (2018) Summary for Policymakers. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the contexto of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty, Masson-Delmotte V et al (eds) World Meteorological Organization, Geneva, Switzerland, p. 1–32

  • Jones C, Carvalho L (2018) The influence of the Atlantic multidecadal oscillation on the eastern Andes low-level jet and precipitation in South America. Nature 1. https://doi.org/10.1038/s41612-018-0050-8

  • Kayano MT, Andreoli RV (2007) Relation of South American summer rainfall interannual variations with the Pacific Decadal Oscillation. Int J Climatology 27(4):531–540

    Google Scholar 

  • Kayano MT, Andreoli RV, Souza RAF (2020) Pacific and Atlantic multidecadal variability relations to the El Niño events and their effects on the South American rainfall. Int J Climatol 40(4):2183–2200. https://doi.org/10.1002/joc.6326A

    Article  Google Scholar 

  • Kayano MT, Capistrano VB (2014) How the Atlantic Multidecadal Oscillation (AMO) modifies the ENSO influence on the South American rainfall. Int J Climatol 34:162–178

    Google Scholar 

  • Kayano MT, Cerón WL, Andreoli RV, Souza RAF, Avila-Diaz A, Zuluaga CF, Carvalho LMV (2022) Does the El Niño-Southern Oscillation affect the combined impact of the Atlantic Multidecadal Oscillation and Pacific Decadal Oscillation on the precipitation and surface air temperature variability over South America? Atmosphere 13:231. https://doi.org/10.3390/atmos13020231

    Article  Google Scholar 

  • Kendall MG (1975) Rank Correlation Methods, 4th edn. Charles Griffin, London

    Google Scholar 

  • Knight JR, Allan RJ, Folland CK, Vellinga M, Mann ME (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32:L. 20708. https://doi.org/10.1029/2005GL024233

    Article  Google Scholar 

  • Knight JR, Folland CK, Scaife AA (2006) Climate impacts of the Atlantic Multidecadal Oscillation. Geophys Res Lett 33:L17706. https://doi.org/10.1029/2006GL026242

    Article  Google Scholar 

  • Kushner PJ, Held IM, Delworth TL (2001) Southern Hemisphere atmospheric circulation response to global warming. J Clim 14:2238–2249

    Google Scholar 

  • Liebmann B, Allured D (2005) Daily precipitation grids for South America. Bull Am Meteorol Soc 86:1567–1570

    Google Scholar 

  • Longueville FD, Hountondji YC, Kindo I, Gemenne F, Ozer P (2016) Long-term analysis of rainfall and temperature data in Burkina Faso (1950–2013). Int J Climatol 36(13):4393–4405

    Google Scholar 

  • Lopes LG (2018) Mudança na disponibilidade hídrica associada às mudanças climáticas e no uso e cobertura da terra na região paulista da bacia do rio Paraíba do Sul. Dissertação (Mestrado em Engenharia de Biossistemas), Universidade Federal Fluminense, Niterói, RJ/Brasil, 85 p

  • Liu Y, Liang XS, Weisberg RH (2007) Rectification of the bias in the wavelet power spectrum. J Atmos Oceanic Technol 24:2093–2102. https://doi.org/10.1175/2007JTECHO511.1

  • Luiz-Silva W, Oscar-Júnior AC, Cavalcanti IFA, Treistman F (2021) An overview of precipitation climatology in Brazil: space-time variability of frequency and intensity associated with atmospheric systems. Hydrol Sci J 66(2):289–308. https://doi.org/10.1080/02626667.2020.1863969

  • Marengo JA (2006) On the hydrological cycle of the Amazon basin: a historical review and current state-of-the-art. Rev Brasil Meteorol 21:1–19

    Google Scholar 

  • Marengo JA, Alves LM (2005) Tendências hidrológicas da Bacia do Rio Paraíba do Sul. Rev Brasil Meteorol Rio de Janeiro 20(2):215–226

    Google Scholar 

  • Marengo JA, Alves LM, Valverde MA, Laborbe R, Rocha RP (2007) Eventos extremos em cenários regionalizados de clima no Brasil e América do Sul para o Século XXI: Projeções de clima futuro usando três modelos regionais. Relatório 5, Ministério do Meio Ambiente (MMA), Secretaria de Biodiversidade e Florestas (SBF), Diretoria de Conservação da Biodiversidade (DCBio). Mudanças Climáticas Globais e Efeitos sobre a Biodiversidade - Subprojeto: Caracterização do clima atual e definição das alterações climáticas para o território brasileiro ao longo do século XXI. Brasília

  • Marengo JA, Alves LM, Ambrizzi T, Young A, Barreto NJC, Ramos AM (2020) Trends in extreme rainfall and hydrogeometeorological disasters in the Metropolitan Area of São Paulo: a review. Ann N Y Acad Sci 1472(1):5–20. https://doi.org/10.1111/nyas.14307

  • Marengo JA, Valverde MC, Obregon GO (2013) Observed and projected changes in rainfall extremes in the Metropolitan Area of São Paulo. Clim Res 57(1):61–72

    Google Scholar 

  • Marshall GJ, Stott PA, Turner J, Connolley WM, King JC, Lachlan-Cope TA (2004) Causes of exceptional atmospheric circulation changes in the Southern Hemisphere. Geophys Res Lett 31(14):L14205. https://doi.org/10.1029/2004GL019952

  • Min SK, Zhang X, Zwiers FW, Hegerl GC (2011) Human contribution to more-intense precipitation extremes. Nature 470:378–381

    Google Scholar 

  • Minuzzi RB, Sediyama GC, Costa JMN, Vianello RL (2006) Influência do fenômeno climático El Niño no período chuvoso da região sudeste do Brasil. Geografia 15(2):5–19

  • Minuzzi RB, Sediyama GC, Costa JMN, Vianello RL (2007) Influência da La Niña na estação chuvosa da região sudeste do Brasil. Rev Brasil Meteorol 22(3):345–353

  • Morettin PA (1999) Ondas e Ondaletas: Da Análise de Fourier à Análise de Ondaletas. São Paulo, Editora da Universidade de São Paulo, 276p

  • Nímer E (1989) Climatologia do Brasil, 2ª. IBGE Departamento de Recursos Naturais e Estudos Ambientais, Rio de Janeiro

    Google Scholar 

  • Nobre P, Shukla J (1996) Variations of sea surface temperature, wind stress and rainfall over the tropical Atlantic and South America. J Clim 9(10):2464–2479

    Google Scholar 

  • Nogués-Paegle J, Mechoso CR, Fu R, Berbery EH, Chao WC, Chen T-C, Cook K, Diaz AF, Enfield D, Ferreira R, Grimm AM, Kousky V, Liebmann B, Marengo J, Mo K, Neelin JD, Paegle J, Robertson AW, Seth A, Vera CS, Zhou J (2002) Progress in Pan American CLIVAR research: understanding the South American monsoon. Meteorologica 27:3–32

    Google Scholar 

  • Oliveira-Júnior JF, Gois G, Terassi PMB, Junior CAS, Blanco CJC, Sobral BS, Gasparini KAC (2018) Drought severity based on the SPI index and its relation to the ENSO and PDO climatic variability modes in the regions North and Northwest of the State of Rio de Janeiro-Brazil. Atmos Res 212:91–105. https://doi.org/10.1016/j.atmosres.2018.04.022

    Article  Google Scholar 

  • Oscar ACS Jr (2015) Extremos atmosféricos e desastres hidrometeorológicos em Duque de Caxias (RJ). Rev Brasil Climatol 17:189–205

    Google Scholar 

  • Perez L, García-Rodríguez F, Hanebuth TJJ (2016) Variability in terrigenous sediment supply offshore of the Río de la Plata (Uruguay) recording the continental climatic history over the past 1200 years. Clim Past 12:623–634

    Google Scholar 

  • Reboita MS, Ambrizzi T, da Rocha RP (2009) Relationship between the southern annular mode and Southern Hemisphere atmospheric systems. Rev Bras Meteorol 24(1):48–55

    Google Scholar 

  • Reboita MS, Ambrizzi T, Silva BA, Pinheiro RF, da Rocha RP (2019) The South Atlantic Subtropical Anticyclone: present and future climate. Front Earth Sci 7:8. https://doi.org/10.3389/feart.2019.00008

    Article  Google Scholar 

  • Reboita MS, Ambrizzi T, Crespo NM, Dutra LMM, Ferreira GWS, Rehbein A, Drumond A, da Rocha RP, de Souza CA (2021) Impacts of teleconnection patterns on South America climate. Ann N Y Acad Sci 1504(1):116–153. https://doi.org/10.1111/nyas.14592

    Article  Google Scholar 

  • Regoto P, Dereczynski C, Silva WL, Santos R, Confalonieri U (2018) Tendências de Extremos de Precipitação para o Estado do Espírito Santo. Anuário do Instituto de Geociências – UFRJ, 41, p. 365–381

  • Ribeiro EM (2020) Variabilidade de baixa frequência, teleconexões e seus efeitos sobre o regime de chuva e vazão do Brasil. Dissertação (Mestrado em Engenharia de Biossistemas), Universidade Federal Fluminense, Niterói, RJ/Brasil, 80 p

  • Santos CAC, Brito JIB, Ramana Rao TV, Menezes HEA (2009) Tendências dos índices de precipitação no Estado do Ceará. Rev Brasil Meteorol 24:39–47

    Google Scholar 

  • Silva DF, Souza FAS, Kayano MT (2010) Análise da Influência das Multi-Escalas Temporais na Precipitação da Bacia Hidrográfica do Rio Mundaú Através do IAC e Ondeletas: Baixo Mundaú. UNOPAR Cient Exatas Tecnol 9(1):19–26

    Google Scholar 

  • Silva GB, Azevedo PV (2008) Índices de tendências de mudanças climáticas no Estado da Bahia. Engenharia Ambiental: Pesquisa Tecnol 5(3):141–151

  • Silva WL, Dereczynski CP (2014) Caracterização Climatológica e Tendências Observadas em Extremos Climáticos no Estado do Rio de Janeiro. Anu Inst Geociên – UFRJ 37:123–138

    Google Scholar 

  • Siqueira AHB (2012) Variabilidade do clima da América do Sul e sua relação com os índices oceânicos e atmosféricos. 79 f. Dissertação (Mestrado em Meteorologia) –Universidade Federal de Alagoas

  • Sobral BS, Oliveira-Júnior JFD, Gois G, Pereira-Júnior ER, Terassi PMB, Muniz-Júnior JGR, Lyra GB, Zeri M (2019) Drought characterization for the state of Rio de Janeiro based on the annual SPI index: trends, statistical tests and its relation with ENSO. Atmos Res 220:141–154. https://doi.org/10.1016/j.atmosres.2019.01.003

    Article  Google Scholar 

  • Souza WM, Azevedo PV (2012) Índices de Detecção de Mudanças Climáticas Derivados da Precipitação Pluviométrica e das Temperaturas em Recife-PE. Rev Brasil Geogr Fís 01:143–159

    Google Scholar 

  • Stone DA, Weaver AJ, Stouffer RJ (2001) Projection of climate change onto modes of atmospheric variability. J Clim 14:3551–3565

    Google Scholar 

  • Sun X, Cook KH, Vizy EK (2017) The South Atlantic subtropical high: climatology and interannual variability. J Clim 30(9):3279–3296

    Google Scholar 

  • Tedeschi RG, Collins M (2016) The influence of ENSO on South American precipitation during austral summer and autumn in observations and models. Int J Climatol 36:618–635. https://doi.org/10.1002/joc.4371

    Article  Google Scholar 

  • Tedeschi RG, Grimm AM, Cavalcanti IFA (2016) Influence of Central and East ENSO on precipitation and its extreme events in South America during austral autumn and winter. Int J Climatol 36:4797–4814. https://doi.org/10.1002/joc.4670

    Article  Google Scholar 

  • Teixeira MS, Satyamurty P (2011) Trends in the frequency of intense precipitation events in Southern and southeastern Brazil during 1960–2004. J Clim 24(7):1913–1921

    Google Scholar 

  • Torrence C, Compo GPA (1998) Practical guide to wavelet analysis. Bull Am Meteor Soc 79:61–78

    Google Scholar 

  • Valverde MC, Marengo JA (2014) Extreme Rainfall Indices in the Hydrographic Basins of Brazil. Open J Modern Hydrol 4:10–26

    Google Scholar 

  • Vitorino MI, Silva Dias PL, Ferreira NJ (2006) Observational study of the seasonality of the submonthly and intraseasonal signal over the tropics. Meteorol Atmos Phys 93:17–35

    Google Scholar 

  • Wang S, Huang J, He Y et al (2014) Combined effects of the Pacific Decadal Oscillation and El Niño-Southern Oscillation on global land dry–wet changes. Sci Rep 4:6651

    Google Scholar 

  • You Q, Kang S, Aguilar E, Pepin N, Flügel WA, Yan Y, Xu Y, Zhang Y, Huang J (2011) Changes in daily climate extremes in China and their connection to the large scale atmospheric circulation during 1961–2003. Clim Dyn 36:2399–2417

    Google Scholar 

  • Zhang X, Yang F (2004) RClimDex (1.0) – User Manual. Climate Research Branch Environment. Canada Downsview

  • Zhang X, Wan H, Zwiers FW, Hegerl GC, Min SK (2013) Attributing intensification of precipitation extremes to human influence. Geophys Res Lett 40:5252–5257

    Google Scholar 

  • Zilli MT, Carvalho LMV, Liebmann B, Silva Dias MA (2017) A comprehensive analysis of trends in extreme precipitation over southeastern coast of Brazil. Int J Climatol 37(5):2269–2279

    Google Scholar 

Download references

Acknowledgements

Thanks are due (i) to the National Electric Energy Agency (Aneel) and to the concessionaire of Energy Light Energia S/A, for the financial assistance granted within the scope of the R&D Light/Aneel project 5161-0016 / 2019, Contract 4500428146 and (ii) to the Coordination for the Improvement of Higher Education Personnel (CAPES/ Ministry of Education of Brazil), for institutional support (Financing Code 001) to the Graduate Programs of the universities involved in the development of the R&D project.

Funding

This work was supported by National Electric Energy Agency (Aneel) and Light Energia S/A (Grant numbers R&D Light/Aneel project 5161–0016 / 2019, Contract 4500428146).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by all authors (see credit taxonomy below). The first draft of the manuscript was written by Mônica Senna and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Credit taxonomy:

Mônica Senna: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Software, Supervision, Validation, Visualization, Writing – original draft, Writing – review & editing

Gutemberg França: Conceptualization, Formal analysis, Funding acquisition, Investigation, Project administration, Resources, Supervision, Validation, Writing – review & editing

Matheus Pereira: Data curation, Formal analysis, Investigation, Methodology, Software, Visualization

Mauricio Soares da Silva: Formal analysis, Investigation, Methodology, Software, Validation, Visualization, Writing – review & editing

Enio Souza: Funding acquisition, Investigation, Project administration, Resources, Supervision, Validation, Writing – review & editing

Ian Dragaud: Formal analysis, Investigation, Methodology, Software, Validation, Visualization, Writing – review & editing

Lucio Souza: Investigation, Methodology, Validation, Writing – review & editing

Nilton Moraes: Investigation, Methodology, Validation, Writing – review & editing

Vinicius Almeida: Investigation, Validation

Manoel Almeida: Investigation, Validation

Mauricio Frota: Funding acquisition, Project administration, Resources, Supervision, Writing – review & editing

Afonso Araujo: Investigation, Validation

Karine Cardozo: Software, Visualization

Lude Viana: Conceptualization, Data curation, Funding acquisition, Project administration, Resources, Supervision, Writing – review & editing

Corresponding author

Correspondence to Mônica Carneiro Alves Senna.

Ethics declarations

Ethics approval

This article does not contain any studies with human or animal participants performed by any of the authors.

Consent to participate

All authors have read and agreed to the published version of the article.

Consent for publication

All authors approved.

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senna, M.C.A., França, G.B., Pereira, M.F. et al. A teleconnection study between oceanic oscillations and trends in precipitation extremes in the Paraíba do Sul River Basin. Theor Appl Climatol 152, 1095–1113 (2023). https://doi.org/10.1007/s00704-023-04451-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1007/s00704-023-04451-y

Profiles

  1. Mônica Carneiro Alves Senna