Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Coal-exit alliance must confront freeriding sectors to propel Paris-aligned momentum

Abstract

The global phase-out of coal by mid-century is considered vital to the Paris Agreement to limit warming well-below 2 °C above pre-industrial levels. Since the inception of the Powering Past Coal Alliance (PPCA) at COP23, political ambitions to accelerate the decline of coal have mounted to become the foremost priority at COP26. However, mitigation research lacks the tools to assess whether this bottom-up momentum can self-propagate toward Paris alignment. Here, we introduce dynamic policy evaluation (DPE), an evidence-based approach for emulating real-world policy-making. Given empirical relationships established between energy-economic developments and policy adoption, we endogenize national political decision-making into the integrated assessment model REMIND via multistage feedback loops with a probabilistic coalition accession model. DPE finds global PPCA participation <5% likely against a current policies backdrop and, counterintuitively, foresees that intracoalition leakage risks may severely compromise sector-specific, demand-side action. DPE further enables policies to interact endogenously, demonstrated here by the PPCA’s path-dependence to COVID-19 recovery investments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: DPE: a cyclical interface between techno-economic and sociopolitical analyses.
Fig. 2: Dynamic feasibility of national PPCA accession from COALogit.
Fig. 3: Annual PPCA-induced deviations from reference baseline.
Fig. 4: Evaluating PPCA scenario outcomes.

Similar content being viewed by others

Data availability

The data and analysis scripts that support the findings of this study are publicly available on Zenodo at https://doi.org/10.5281/zenodo.7335236.

Code availability

The source code of the REMIND–COALogit model version used in this study are available on Zenodo at https://doi.org/10.5281/zenodo.7335042. Source code for REMIND input data processing functions are openly available on GitHub at https://github.com/pik-piam/mrremind.

References

  1. Paris Agreement (UNFCCC, 2015).

  2. Kriegler, E. et al. Pathways limiting warming to 1.5 °C: a tale of turning around in no time? Philos. Trans. R. Soc. A 376, 20160457 (2018).

    Article  Google Scholar 

  3. Rogelj, J. et al. in Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) Ch. 2 (WMO, 2018).

  4. Geels, F. W., Berkhout, F. & van Vuuren, D. P. Bridging analytical approaches for low-carbon transitions. Nat. Clim. Change 6, 576–583 (2016).

    Article  Google Scholar 

  5. Hirt, L. F., Schell, G., Sahakian, M. & Trutnevyte, E. A review of linking models and socio-technical transitions theories for energy and climate solutions. Environ. Innov. Societal Transit. 35, 162–179 (2020).

    Article  Google Scholar 

  6. Jewell, J. & Cherp, A. On the political feasibility of climate change mitigation pathways: is it too late to keep warming below 1.5 °C? WIREs Clim. Change 11, e621 (2020).

    Article  Google Scholar 

  7. Trutnevyte, E. et al. Societal transformations in models for energy and climate policy: the ambitious next step. One Earth 1, 423–433 (2019).

    Article  Google Scholar 

  8. van Beek, L., Oomen, J., Hajer, M., Pelzer, P. & van Vuuren, D. Navigating the political: an analysis of political calibration of integrated assessment modelling in light of the 1.5 °C goal. Environ. Sci. Policy 133, 193–202 (2022).

    Article  Google Scholar 

  9. Riahi, K. et al. Locked into Copenhagen pledges—implications of short-term emission targets for the cost and feasibility of long-term climate goals. Technol. Forecast. Soc. Change 90, 8–23 (2015).

    Article  Google Scholar 

  10. Schaeffer, M. et al. Mid- and long-term climate projections for fragmented and delayed-action scenarios. Technol. Forecast. Soc. Change 90, 257–268 (2015).

    Article  Google Scholar 

  11. Bauer, N. et al. Quantification of an efficiency–sovereignty trade-off in climate policy. Nature 588, 261–266 (2020).

    Article  CAS  Google Scholar 

  12. Schreyer, F. et al. Common but differentiated leadership: strategies and challenges for carbon neutrality by 2050 across industrialized economies. Environ. Res. Lett. 15, 114016 (2020).

    Article  Google Scholar 

  13. Brutschin, E. et al. A multidimensional feasibility evaluation of low-carbon scenarios. Environ. Res. Lett. 16, 064069 (2021).

    Article  CAS  Google Scholar 

  14. de Coninck, H. et al. in Special Report on Global Warming of 1.5 °C: Summary for Policy Makers (eds Masson-Delmotte, V. et al.) 313–443 (WMO, 2018).

  15. Nordhaus, W. Climate clubs: overcoming free-riding in international climate policy. Am. Econ. Rev. 105, 1339–1370 (2015).

    Article  Google Scholar 

  16. Voigt, C. The compliance and implementation mechanism of the Paris Agreement. RECIEL 25, 161–173 (2016).

    Article  Google Scholar 

  17. Roelfsema, M. et al. Taking stock of national climate policies to evaluate implementation of the Paris Agreement. Nat. Commun. 11, 2096 (2020).

    Article  CAS  Google Scholar 

  18. Meinshausen, M. et al. Realization of Paris Agreement pledges may limit warming just below 2 °C. Nature 604, 304–309 (2022).

    Article  CAS  Google Scholar 

  19. Rogelj, J. et al. Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature 534, 631–639 (2016).

    Article  CAS  Google Scholar 

  20. Roelfsema, M. et al. Reducing global GHG emissions by replicating successful sector examples: the ‘good practice policies’ scenario. Clim. Policy 18, 1103–1113 (2018).

    Article  Google Scholar 

  21. Sabel, C. F. & Victor, D. G. Governing global problems under uncertainty: making bottom-up climate policy work. Clim. Change 144, 15–27 (2017).

    Article  Google Scholar 

  22. Meckling, J., Kelsey, N., Biber, E. & Zysman, J. Winning coalitions for climate policy. Science 349, 1170–1171 (2015).

    Article  CAS  Google Scholar 

  23. Cherp, A., Vinichenko, V., Tosun, J., Gordon, J. A. & Jewell, J. National growth dynamics of wind and solar power compared to the growth required for global climate targets. Nat. Energy 6, 742–754 (2021).

    Article  Google Scholar 

  24. Kammerer, M. & Namhata, C. What drives the adoption of climate change mitigation policy? A dynamic network approach to policy diffusion. Policy Sci. 51, 477–513 (2018).

    Article  Google Scholar 

  25. Alizada, K. Rethinking the diffusion of renewable energy policies: a global assessment of feed-in tariffs and renewable portfolio standards. Energy Res. Soc. Sci. 44, 346–361 (2018).

    Article  Google Scholar 

  26. Cherp, A., Vinichenko, V., Jewell, J., Brutschin, E. & Sovacool, B. Integrating techno-economic, socio-technical and political perspectives on national energy transitions: a meta-theoretical framework. Energy Res. Soc. Sci. 37, 175–190 (2018).

    Article  Google Scholar 

  27. IPCC. Climate Change 2022: Mitigation of Climate Change (eds Shukla, P. R. et al.) (Cambridge Univ. Press, 2022).

  28. Zhang, S., Bauer, N., Yin, G. & Xie, X. Technology learning and diffusion at the global and local scales: a modeling exercise in the REMIND model. Technol. Forecast. Soc. Change 151, 119765 (2020).

    Article  Google Scholar 

  29. Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).

    Article  Google Scholar 

  30. Lamb, W. F. & Minx, J. C. The political economy of national climate policy: architectures of constraint and a typology of countries. Energy Res. Soc. Sci. 64, 101429 (2020).

    Article  Google Scholar 

  31. Jewell, J., Vinichenko, V., Nacke, L. & Cherp, A. Prospects for powering past coal. Nat. Clim. Change 9, 592–597 (2019).

    Article  Google Scholar 

  32. Jakob, M. & Steckel, J. C. The Political Economy of Coal: Obstacles to Clean Energy Transitions (Routledge, 2022).

  33. Ohlendorf, N., Jakob, M. & Steckel, J. C. The political economy of coal phase-out: exploring the actors, objectives, and contextual factors shaping policies in eight major coal countries. Energy Res. Soc. Sci. 90, 102590 (2022).

    Article  Google Scholar 

  34. Jakob, M., Flachsland, C., Christoph Steckel, J. & Urpelainen, J. Actors, objectives, context: a framework of the political economy of energy and climate policy applied to India, Indonesia, and Vietnam. Energy Res. Soc. Sci. 70, 101775 (2020).

    Article  Google Scholar 

  35. Levi, S. Why hate carbon taxes? Machine learning evidence on the roles of personal responsibility, trust, revenue recycling, and other factors across 23 European countries. Energy Res. Soc. Sci. 73, 101883 (2021).

    Article  Google Scholar 

  36. Cheon, A., Urpelainen, J. & Lackner, M. Why do governments subsidize gasoline consumption? An empirical analysis of global gasoline prices, 2002–2009. Energy Policy 56, 382–390 (2013).

    Article  Google Scholar 

  37. Geels, F. W., McMeekin, A. & Pfluger, B. Socio-technical scenarios as a methodological tool to explore social and political feasibility in low-carbon transitions: bridging computer models and the multi-level perspective in UK electricity generation (2010–2050). Technol. Forecast. Soc. Change 151, 119258 (2020).

    Article  Google Scholar 

  38. Bauer, N. et al. CO2 emission mitigation and fossil fuel markets: dynamic and international aspects of climate policies. Technol. Forecast. Soc. Change 90, 243–256 (2015).

    Article  Google Scholar 

  39. McGlade, C. & Ekins, P. The geographical distribution of fossil fuels unused when limiting global warming to 2 °C. Nature 517, 187–190 (2015).

    Article  CAS  Google Scholar 

  40. Minx, J. et al. Coal transitions—Part 2: phase-out dynamics in global long-term mitigation scenarios. Environ. Res. Lett. (in the press).

  41. Welsby, D., Price, J., Pye, S. & Ekins, P. Unextractable fossil fuels in a 1.5 °C world. Nature 597, 230–234 (2021).

    Article  CAS  Google Scholar 

  42. Bauer, N. et al. Assessing global fossil fuel availability in a scenario framework. Energy 111, 580–592 (2016).

    Article  Google Scholar 

  43. Tong, D. et al. Committed emissions from existing energy infrastructure jeopardize 1.5 °C climate target. Nature 572, 373–377 (2019).

  44. Fofrich, R. et al. Early retirement of power plants in climate mitigation scenarios. Environ. Res. Lett. 15, 094064 (2020).

    Article  CAS  Google Scholar 

  45. Johnson, N. et al. Stranded on a low-carbon planet: implications of climate policy for the phase-out of coal-based power plants. Technol. Forecast. Soc. Change 90, 89–102 (2015).

    Article  Google Scholar 

  46. Rauner, S., Bauer, N., Dirnacher, A. & Van Dingenen, R. Coal exit health and environmental damage reductions outweigh economic impacts. Nat. Clim. Change 10, 308–312 (2020).

  47. Diluiso, F. et al. Coal transitions—Part 1: a systematic map and review of case study learnings from regional, national, and local coal phase-out experiences. Environ. Res. Lett. 16, 113003 (2021).

    Article  CAS  Google Scholar 

  48. Muttitt, G., Price, J., Pye, S. & Welsby, D. Ignoring socio-political realities in 1.5°C pathways overplays coal power phaseout compared to other climate mitigation options. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-1419087/v1

  49. Edenhofer, O. King Coal and the queen of subsidies. Science 349, 1286–1287 (2015).

    Article  CAS  Google Scholar 

  50. Edenhofer, O., Steckel, J. C., Jakob, M. & Bertram, C. Reports of coal’s terminal decline may be exaggerated. Environ. Res. Lett. 13, 024019 (2018).

    Article  Google Scholar 

  51. Jakob, M. et al. The future of coal in a carbon-constrained climate. Nat. Clim. Change 10, 704–707 (2020).

    Article  CAS  Google Scholar 

  52. Blondeel, M., Van de Graaf, T. & Haesebrouck, T. Moving beyond coal: exploring and explaining the Powering Past Coal Alliance. Energy Res. Soc. Sci. 59, 101304 (2020).

    Article  Google Scholar 

  53. Bertram, C. et al. COVID-19-induced low power demand and market forces starkly reduce CO2 emissions. Nat. Clim. Change 11, 193–196 (2021).

    Article  CAS  Google Scholar 

  54. Gilabert, P. & Lawford-Smith, H. Political feasibility: a conceptual exploration. Polit. Stud. 60, 809–825 (2012).

    Article  Google Scholar 

  55. Baumstark, L. et al. REMIND2.1: Transformation and innovation dynamics of the energy-economic system within climate and sustainability limits. Geosci. Model Dev. Discuss. https://doi.org/10.5194/gmd-14-6571-2021 (2021).

  56. Li, F. G. N., Trutnevyte, E. & Strachan, N. A review of socio-technical energy transition (STET) models. Technol. Forecast. Soc. Change 100, 290–305 (2015).

    Article  Google Scholar 

  57. van Sluisveld, M. A. E. et al. Comparing future patterns of energy system change in 2 °C scenarios with historically observed rates of change. Glob. Environ. Change 35, 436–449 (2015).

    Article  Google Scholar 

  58. Wilson, C., Grubler, A., Bauer, N., Krey, V. & Riahi, K. Future capacity growth of energy technologies: are scenarios consistent with historical evidence? Climatic Change 118, 381–395 (2013).

    Article  Google Scholar 

  59. Loftus, P. J., Cohen, A. M., Long, J. C. S. & Jenkins, J. D. A critical review of global decarbonization scenarios: what do they tell us about feasibility? WIREs Clim. Change 6, 93–112 (2015).

    Article  Google Scholar 

  60. van Sluisveld, M. A. E. et al. Aligning integrated assessment modelling with socio-technical transition insights: an application to low-carbon energy scenario analysis in Europe. Technol. Forecast. Soc. Change 151, 119177 (2020).

    Article  Google Scholar 

  61. Andrijevic, M., Crespo Cuaresma, J., Muttarak, R. & Schleussner, C.-F. Governance in socioeconomic pathways and its role for future adaptive capacity. Nat. Sustain. 3, 35–41 (2020).

    Article  Google Scholar 

  62. Moore, F. C. et al. Determinants of emissions pathways in the coupled climate–social system. Nature 603, 103–111 (2022).

    Article  CAS  Google Scholar 

  63. Winkelmann, R. et al. Social tipping processes towards climate action: a conceptual framework. Ecol. Econ. 192, 107242 (2022).

    Article  Google Scholar 

  64. Rocha, M. et al. Implications of the Paris Agreement for Coal Use in the Power Sector (Climate Analytics, 2016); https://climateanalytics.org/media/climateanalytics-coalreport_nov2016_1.pdf

  65. Global Coal Plant Tracker (Global Energy Monitor, accessed January 2021); https://globalenergymonitor.org/projects/global-coal-plant-tracker/

  66. World Energy Balances (IEA, 2017); https://doi.org/10.1787/data-00512-en

  67. Edelenbosch, O. Y. et al. Comparing projections of industrial energy demand and greenhouse gas emissions in long-term energy models. Energy 122, 701–710 (2017).

    Article  Google Scholar 

  68. Ritchie, J. & Dowlatabadi, H. Why do climate change scenarios return to coal? Energy 140, 1276–1291 (2017).

    Article  Google Scholar 

  69. Victoria, M., Zeyen, E. & Brown, T. Speed of technological transformations required in Europe to achieve different climate goals. Joule 6, 1066–1086 (2022).

    Article  CAS  Google Scholar 

  70. Luderer, G. et al. Impact of declining renewable energy costs on electrification in low-emission scenarios. Nat. Energy 7, 32–42 (2022).

    Article  Google Scholar 

  71. Otto, I. M. et al. Social tipping dynamics for stabilizing Earth’s climate by 2050. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1900577117 (2020).

  72. Soergel, B. et al. A sustainable development pathway for climate action within the UN 2030 Agenda. Nat. Clim. Change 11, 656–664 (2021).

    Article  Google Scholar 

  73. Asheim, G. B. et al. The case for a supply-side climate treaty. Science 365, 325–327 (2019).

    Article  CAS  Google Scholar 

  74. Erickson, P., Lazarus, M. & Piggot, G. Limiting fossil fuel production as the next big step in climate policy. Nat. Clim. Change 8, 1037–1043 (2018).

    Article  CAS  Google Scholar 

  75. Gaulin, N. & Le Billon, P. Climate change and fossil fuel production cuts: assessing global supply-side constraints and policy implications. Clim. Policy https://doi.org/10.1080/14693062.2020.1725409 (2020).

  76. Manych, N., Steckel, J. C. & Jakob, M. Finance-based accounting of coal emissions. Environ. Res. Lett. 16, 044028 (2021).

    Article  Google Scholar 

  77. Thapa, B. Debt-for-nature swaps: an overview. Int. J. Sustain. Dev. World Ecol. 5, 249–262 (1998).

    Article  Google Scholar 

  78. Mazzucato, M. & Semieniuk, G. Financing renewable energy: who is financing what and why it matters. Technol. Forecast. Soc. Change 127, 8–22 (2018).

    Article  Google Scholar 

  79. Deleidi, M., Mazzucato, M. & Semieniuk, G. Neither crowding in nor out: public direct investment mobilising private investment into renewable electricity projects. Energy Policy 140, 111195 (2020).

    Article  Google Scholar 

  80. Li, J., Ho, M. S., Xie, C. & Stern, N. China’s flexibility challenge in achieving carbon neutrality by 2060. Renew. Sustain. Energy Rev. 158, 112112 (2022).

    Article  Google Scholar 

  81. Simshauser, P. & Gilmore, J. Climate change policy discontinuity & Australia’s 2016–2021 renewable investment supercycle. Energy Policy 160, 112648 (2022).

    Article  Google Scholar 

  82. Rolnick, D. et al. Tackling climate change with machine learning. ACM Comput. Surv. 55, 1–96 (2023).

    Article  Google Scholar 

  83. Lam, A. & Mercure, J.-F. Which policy mixes are best for decarbonising passenger cars? Simulating interactions among taxes, subsidies and regulations for the United Kingdom, the United States, Japan, China, and India. Energy Res. Soc. Sci. 75, 101951 (2021).

    Article  Google Scholar 

  84. Bertram, C. et al. Complementing carbon prices with technology policies to keep climate targets within reach. Nat. Clim. Change 5, 235–239 (2015).

    Article  CAS  Google Scholar 

  85. Meckling, J., Sterner, T. & Wagner, G. Policy sequencing toward decarbonization. Nat. Energy 2, 918–922 (2017).

    Article  Google Scholar 

  86. Pahle, M. et al. Sequencing to ratchet up climate policy stringency. Nat. Clim. Change 8, 861–867 (2018).

    Article  Google Scholar 

  87. Semieniuk, G. et al. Stranded fossil-fuel assets translate to major losses for investors in advanced economies. Nat. Clim. Change 12, 532–538 (2022).

    Article  Google Scholar 

  88. Fricko, O. et al. The marker quantification of the Shared Socioeconomic Pathway 2: A middle-of-the-road scenario for the 21st century. Glob. Environ. Change 42, 251–267 (2017).

    Article  Google Scholar 

  89. Hepburn, C., O’Callaghan, B., Stern, N., Stiglitz, J. & Zenghelis, D. Will COVID-19 fiscal recovery packages accelerate or retard progress on climate change? Oxford Rev. Econ. Policy 36, S359–S381 (2020).

    Article  Google Scholar 

  90. Fouquet, R. Path dependence in energy systems and economic development. Nat. Energy 1, 16098 (2016).

    Article  Google Scholar 

  91. Seto, K. C. et al. Carbon lock-in: types, causes, and policy implications. Annu. Rev. Environ. Resour. 41, 425–452 (2016).

    Article  Google Scholar 

  92. Unruh, G. C. Understanding carbon lock-in. Energy Policy 28, 817–830 (2000).

    Article  Google Scholar 

  93. Bi, S. et al. REMIND-COALogit. Zenodo https://doi.org/10.5281/zenodo.7335042 (2022).

  94. Bi, S., Bauer, N. & Jewell, J. Data repository—coal-exit alliance must confront freeriding sectors to propel Paris-aligned momentum. Zenodo https://doi.org/10.5281/zenodo.7335237 (2022).

Download references

Acknowledgements

The research leading to the results reported in this study was supported by the PEGASOS project (01LA1826C; S.B. and N.B.), made possible by funding from the German Federal Ministry of Education and Research (BMBF), and the MANIFEST project (950408; J.J.), funded by the European Commission’s Horizon 2020 ERC Starting Grant programme. We thank L. Merfort, V. Vinichenko, A. Malik and M. Pehl for correspondence and specific recommendations of data or code that enabled the implementation of certain elements of our study.

Author information

Authors and Affiliations

Authors

Contributions

S.B. and N.B. conceived of the research questions, while J.J. and S.B. conceptualized the methodology. All authors contributed to the literature review. S.B. led the implementation, analysis and manuscript writing with contributions from all authors. J.J. conceived of Figs. 1 and 2. N.B. conceived of Table 1. S.B. conceived of all other display items.

Corresponding author

Correspondence to Stephen L. Bi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Climate Change thanks Mark Roelfsema and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Historical coal power capacity in GW from 2000–2020 and near-term extrapolations with varied assumptions.

aggregated to REMIND regions (Supplementary Fig. A3.1) and globally. The ‘Literature’ scenario corresponds to global assumptions of 40-year lifetimes and 100% project completion, as is often used in prior studies on ‘committed emissions.’44 See Supplementary Table A1.5 for exact GW values per region.

Extended Data Fig. 2 The approximated PPCA-DFS in 2020.

which better illustrates the logit model’s ability to predict PPCA accession than the 2015 snapshot in Fig. 2a. REMIND source data licensing agreements unfortunately prevent us from using more recent data at the moment, so COALogit parameters are estimated using 2015 data. Coal-power-shares are derived for this figure from historical coal capacities, extrapolated utilization rates, and downscaled electricity generation from REMIND.

Extended Data Fig. 3 Depiction of the REMIND–COALogit framework.

Supplementary Table 3 lists all the specific variables passed from REMIND to COALogit, which vary by scenario. Policy stringency coefficients (PSCs) translate country-level coalitions into the fraction of each REMIND region’s coal demand (electricity or total) that the PPCA phases out. Their derivation is also scenario-dependent, as shown in Eqs. (1)-(2) and (5)-(11). The REMIND schematic (from Baumstark et al. 55) includes some pre-existing interfaces for context and illustration of model structure. The coupling routines vary from iterative co-optimization (REMIND-MAgPIE) to ex post calculations (MAGICC), but none are identical to the REMIND–COALogit soft-link.

Extended Data Fig. 4 REMIND–COALogit cascade for modelling multistage PPCA accession.

shown for six PPCA scenarios. Each Roman numeral corresponds to a distinct REMIND or COALogit run in the sequence, and numerals used throughout the Methods refer to this figure. Each REMIND run is a global Nash equilibrium solution in which regional welfare is intertemporally optimized across the time horizon shown (prior periods are fixed to the upstream run). The year in each COALogit oval indicates the REMIND period from which input data is received. This cascade is repeated for each COVID recovery, giving a total of 18 PPCA scenarios.

Extended Data Fig. 5 Impacts of the power-exit (a) and demand-exit (b) PPCA scenarios on final energy (FE) consumption in each sector.

Not shown are gas- and hydrogen-based mobility, and heat used in industry and buildings.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4, Tables 1–5, Appendices I–III, Appendix I Tables 1.1–1.6, Appendix II Fig. 2.1 and Appendix III Tables 3.1–3.3.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, S.L., Bauer, N. & Jewell, J. Coal-exit alliance must confront freeriding sectors to propel Paris-aligned momentum. Nat. Clim. Chang. 13, 130–139 (2023). https://doi.org/10.1038/s41558-022-01570-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-022-01570-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing