Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enzymes as viscoelastic catalytic machines

Abstract

The catalytic cycle involves internal motions and conformational changes that allow enzymes to specifically bind to substrates, reach the transition state and release the product. Such mechanical interactions and motions are often long ranged so that mutations of residues far from the active site can modulate the enzymatic cycle. In particular, regions that undergo high strain during the cycle give mechanical flexibility to the protein, which is crucial for protein motion. Here we directly probe the connection between strain, flexibility and functionality, and we quantify how distant high-strain residues modulate the catalytic function via long-ranged force transduction. We measure the rheological and catalytic properties of wild-type guanylate kinase and of its mutants with a single amino acid replacement in low-/high-strain regions and in binding/non-binding regions. The rheological response of the protein to an applied oscillating force fits a continuum model of a viscoelastic material whose mechanical properties are significantly affected by mutations in high-strain regions, as opposed to mutations in control regions. Furthermore, catalytic activity assays show that mutations in high-strain or binding regions tend to reduce activity, whereas mutations in low-strain, non-binding regions are neutral. These findings suggest that enzymes act as viscoelastic catalytic machines with sequence-encoded mechanical specifications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic and details of experiment.
Fig. 2: Strain computation and selection of mutants.
Fig. 3: Nano-rheology experimental results and model.
Fig. 4: Simulation of the pulled-apart enzyme.
Fig. 5: Enzymatic activity measurements.

Similar content being viewed by others

Data availability

Data for nano-rheology and enzymatic activity experiments are available in Supplementary Data. Additional data are available from the corresponding authors upon request.

Code availability

Code used to calculate the strain is available via GitHub at https://github.com/mirabdi/PDAnalysis.

References

  1. Warshel, A. & Levitt, M. Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J. Mol. Biol. 103, 227–249 (1976).

    Article  Google Scholar 

  2. Vernon, C. A. The mechanisms of hydrolysis of glycosides and their relevance to enzyme-catalysed reactions. Proc. R. Soc. Lond. B 167, 389–401 (1967).

    Article  ADS  Google Scholar 

  3. Perutz, M. F. The structure and function of lysozyme—concluding remarks. Proc. R. Soc. Lond. B 167, 448 (1967).

  4. Warshel, A. Energetics of enzyme catalysis. Proc. Natl Acad. Sci. USA 75, 5250–5254 (1978).

    Article  ADS  Google Scholar 

  5. Cannon, W. R., Singleton, S. F. & Benkovic, S. J. A perspective on biological catalysis. Nat. Struct. Biol. 3, 821–833 (1996).

    Article  Google Scholar 

  6. Shan, S. & Herschlag, D. The change in hydrogen bond strength accompanying charge rearrangement: implications for enzymatic catalysis. Proc. Natl Acad. Sci. USA 93, 14474–14479 (1996).

    Article  ADS  Google Scholar 

  7. Warshel, A. Electrostatic origin of the catalytic power of enzymes and the role of preorganized active sites. J. Biol. Chem. 273, 27035–27038 (1998).

    Article  Google Scholar 

  8. Kraut, D. A., Carroll, K. S. & Herschlag, D. Challenges in enzyme mechanism and energetics. Annu. Rev. Biochem. 72, 517–571 (2003).

    Article  Google Scholar 

  9. Warshel, A. et al. Electrostatic basis for enzyme catalysis. Chem. Rev. 106, 3210–3235 (2006).

    Article  Google Scholar 

  10. Fried, S. D., Bagchi, S. & Boxer, S. G. Extreme electric fields power catalysis in the active site of ketosteroid isomerase. Science 346, 1510–1514 (2014).

    Article  ADS  Google Scholar 

  11. Haldane, J. B. S. Enzymes (Longmans, Green and Company, 1930).

  12. Pauling, L. C. Molecular architecture and biological reactions. Chem. Eng. News 24, 1375–1377 (1946).

    Article  Google Scholar 

  13. Pauling, L. C. Chemical achievement and hope for the future. Am. Sci. 36, 51–58 (1948).

    Google Scholar 

  14. Cannon, W. R. & Benkovic, S. J. Solvation, reorganization energy, and biological catalysis. J. Biol. Chem. 273, 26257–26260 (1998).

    Article  Google Scholar 

  15. Blomberg, R. et al. Precision is essential for efficient catalysis in an evolved Kemp eliminase. Nature 503, 418–421 (2013).

    Article  ADS  Google Scholar 

  16. Osuna, S., Jiménez-Osés, G., Noey, E. L. & Houk, K. N. Molecular dynamics explorations of active site structure in designed and evolved enzymes. Acc. Chem. Res. 48, 1080–1089 (2015).

    Article  Google Scholar 

  17. Radzicka, A. & Wolfenden, R. A proficient enzyme. Science 267, 90–93 (1995).

    Article  ADS  Google Scholar 

  18. Wolfenden, R. & Snider, M. J. The depth of chemical time and the power of enzymes as catalysts. Acc. Chem. Res. 34, 938–945 (2001).

    Article  Google Scholar 

  19. McBride, J. M. & Tlusty, T. The physical logic of protein machines. J. Stat. Mech: Theory Exp. 2024, 024001 (2024).

    Article  Google Scholar 

  20. Saleh, T. & Kalodimos, C. G. Enzymes at work are enzymes in motion. Science 355, 247–248 (2017).

    Article  ADS  Google Scholar 

  21. Karplus, M. & Kuriyan, J. Molecular dynamics and protein function. Proc. Natl Acad. Sci. USA 102, 6679–6685 (2005).

    Article  ADS  Google Scholar 

  22. Henzler-Wildman, K. & Kern, D. Dynamic personalities of proteins. Nature 450, 964–972 (2007).

    Article  ADS  Google Scholar 

  23. Wei, G., Xi, W., Nussinov, R. & Ma, B. Protein ensembles: how does nature harness thermodynamic fluctuations for life? The diverse functional roles of conformational ensembles in the cell. Chem. Rev. 116, 6516–6551 (2016).

    Article  Google Scholar 

  24. Motlagh, H. N., Wrabl, J. O., Li, J. & Hilser, V. J. The ensemble nature of allostery. Nature 508, 331–339 (2014).

    Article  ADS  Google Scholar 

  25. Bahar, I., Lezon, T. R., Yang, L.-W. & Eyal, E. Global dynamics of proteins: bridging between structure and function. Annu. Rev. Biophys. 39, 23–42 (2010).

    Article  Google Scholar 

  26. Tang, Q.-Y. & Kaneko, K. Long-range correlation in protein dynamics: confirmation by structural data and normal mode analysis. PLoS Comput. Biol. 16, e1007670 (2020).

    Article  Google Scholar 

  27. Boehr, D. D., Dyson, H. J. & Wright, P. E. An NMR perspective on enzyme dynamics. Chem. Rev. 106, 3055–3079 (2006).

    Article  Google Scholar 

  28. Bhabha, G., Biel, J. T. & Fraser, J. S. Keep on moving: discovering and perturbing the conformational dynamics of enzymes. Acc. Chem. Res. 48, 423–430 (2015).

    Article  Google Scholar 

  29. Boehr, D. D. et al. A distal mutation perturbs dynamic amino acid networks in dihydrofolate reductase. Biochemistry 52, 4605–4619 (2013).

    Article  Google Scholar 

  30. Wong, K. F., Selzer, T., Benkovic, S. J. & Hammes-Schiffer, S. Impact of distal mutations on the network of coupled motions correlated to hydride transfer in dihydrofolate reductase. Proc. Natl Acad. Sci. USA 102, 6807–6812 (2005).

    Article  ADS  Google Scholar 

  31. Wang, L., Tharp, S., Selzer, T., Benkovic, S. J. & Kohen, A. Effects of a distal mutation on active site chemistry. Biochemistry 45, 1383–1392 (2006).

    Article  Google Scholar 

  32. Wang, X. et al. D3DistalMutation: a database to explore the effect of distal mutations on enzyme activity. J. Chem. Inf. Model. 61, 2499–2508 (2021).

    Article  Google Scholar 

  33. Gerstein, M., Lesk, A. M. & Chothia, C. Structural mechanisms for domain movements in proteins. Biochemistry 33, 6739–6749 (1994).

    Article  Google Scholar 

  34. McBride, J. M., Eckmann, J.-P. & Tlusty, T. General theory of specific binding: insights from a genetic-mechano-chemical protein model. Mol. Biol. Evol. 39, msac217 (2022).

    Article  Google Scholar 

  35. Gutteridge, A. & Thornton, J. Conformational changes observed in enzyme crystal structures upon substrate binding. J. Mol. Biol. 346, 21–28 (2005).

    Article  Google Scholar 

  36. Daniel, R. M., Dunn, R. V., Finney, J. L. & Smith, J. C. The role of dynamics in enzyme activity. Annu. Rev. Biophys. Biomol. Struct. 32, 69–92 (2003).

    Article  Google Scholar 

  37. Austin, R. H., Beeson, K. W., Eisenstein, L., Frauenfelder, H. & Gunsalus, I. C. Dynamics of ligand binding to myoglobin. Biochemistry 14, 5355–5373 (1975).

    Article  Google Scholar 

  38. Koshland, D. E. Application of a theory of enzyme specificity to protein synthesis. Proc. Natl Acad. Sci. USA 44, 98–104 (1958).

    Article  ADS  Google Scholar 

  39. Herschlag, D. The role of induced fit and conformational changes of enzymes in specificity and catalysis. Bioorg. Chem. 16, 62–96 (1988).

    Article  Google Scholar 

  40. Wang, Q. et al. Protein recognition and selection through conformational and mutually induced fit. Proc. Natl Acad. Sci. USA 110, 20545–20550 (2013).

    Article  ADS  Google Scholar 

  41. Ma, B. & Nussinov, R. Enzyme dynamics point to stepwise conformational selection in catalysis. Curr. Opin. Chem. Biol. 14, 652–659 (2010).

    Article  Google Scholar 

  42. Savir, Y. & Tlusty, T. The ribosome as an optimal decoder: a lesson in molecular recognition. Cell 153, 471–479 (2013).

    Article  Google Scholar 

  43. Savir, Y. & Tlusty, T. RecA-mediated homology search as a nearly optimal signal detection system. Mol. Cell 40, 388–396 (2010).

    Article  Google Scholar 

  44. Savir, Y. & Tlusty, T. Conformational proofreading: the impact of conformational changes on the specificity of molecular recognition. PLoS ONE 2, e468 (2007).

    Article  ADS  Google Scholar 

  45. Papaleo, E. et al. The role of protein loops and linkers in conformational dynamics and allostery. Chem. Rev. 116, 6391–6423 (2016).

    Article  Google Scholar 

  46. Bahar, I., Chennubhotla, C. & Tobi, D. Intrinsic dynamics of enzymes in the unbound state and relation to allosteric regulation. Curr. Opin. Struct. Biol. 17, 633–640 (2007).

    Article  Google Scholar 

  47. Goodey, N. M. & Benkovic, S. J. Allosteric regulation and catalysis emerge via a common route. Nat. Chem. Biol. 4, 474–482 (2008).

    Article  Google Scholar 

  48. Guo, J. & Zhou, H.-X. Protein allostery and conformational dynamics. Chem. Rev. 116, 6503–6515 (2016).

    Article  Google Scholar 

  49. Wodak, S. J. et al. Allostery in its many disguises: from theory to applications. Structure 27, 566–578 (2019).

    Article  Google Scholar 

  50. Hammes-Schiffer, S. & Benkovic, S. J. Relating protein motion to catalysis. Annu. Rev. Biochem. 75, 519–541 (2006).

    Article  Google Scholar 

  51. Eisenmesser, E. Z. et al. Intrinsic dynamics of an enzyme underlies catalysis. Nature 438, 117–121 (2005).

    Article  ADS  Google Scholar 

  52. Henzler-Wildman, K. A. et al. A hierarchy of timescales in protein dynamics is linked to enzyme catalysis. Nature 450, 913–916 (2007).

    Article  ADS  Google Scholar 

  53. Warshel, A. & Bora, R. P. Perspective: defining and quantifying the role of dynamics in enzyme catalysis. J. Chem. Phys. 144, 180901 (2016).

    Article  ADS  Google Scholar 

  54. Chaikin, P. M. & Lubensky, T. C. Principles of Condensed Matter Physics (Cambridge Univ. Press, 1995).

  55. Alexander, S. Amorphous solids: their structure, lattice dynamics and elasticity. Phys. Rep. 296, 65–236 (1998).

    Article  ADS  Google Scholar 

  56. Eckmann, J.-P. & Tlusty, T. Dimensional reduction in complex living systems: where, why, and how. BioEssays 43, 2100062 (2021).

    Article  Google Scholar 

  57. Dutta, S., Eckmann, J.-P., Libchaber, A. & Tlusty, T. Green function of correlated genes in a minimal mechanical model of protein evolution. Proc. Natl Acad. Sci. USA 115, E4559–E4568 (2018).

    Article  Google Scholar 

  58. Tlusty, T., Libchaber, A. & Eckmann, J.-P. Physical model of the genotype-to-phenotype map of proteins. Phys. Rev. X 7, 021037 (2017).

    Google Scholar 

  59. May, A. & Zacharias, M. Energy minimization in low-frequency normal modes to efficiently allow for global flexibility during systematic protein–protein docking. Proteins 70, 794–809 (2008).

    Article  Google Scholar 

  60. Russo, C. J., Husain, K. & Murugan, A. Soft modes as a predictive framework for low dimensional biological systems across scales. Annu. Rev. Biophys. https://doi.org/10.1146/annurev-biophys-081624-030543 (2024).

  61. Tlusty, T. Self-referring DNA and protein: a remark on physical and geometrical aspects. Philos. Trans. R. Soc. A 374, 20150070 (2016).

    Article  ADS  Google Scholar 

  62. McBride, J. M. et al. AlphaFold2 can predict single-mutation effects. Phys. Rev. Lett. 131, 218401 (2023).

    Article  ADS  Google Scholar 

  63. McBride, J. M., Koshevarnikov, A., Siek, M., Grzybowski, B. A. & Tlusty, T. Statistical survey of chemical and geometric patterns on protein surfaces as a blueprint for protein-mimicking nanoparticles. Small Struct. 5, 2400086 (2024).

    Article  Google Scholar 

  64. McBride, J. M. & Tlusty, T. AI-predicted protein deformation encodes energy landscape perturbation. Phys. Rev. Lett. 133, 098401 (2024).

    Article  Google Scholar 

  65. Flechsig, H. & Mikhailov, A. S. Simple mechanics of protein machines. J. R. Soc. Interface 16, 20190244 (2019).

    Article  Google Scholar 

  66. Mitchell, M. R., Tlusty, T. & Leibler, S. Strain analysis of protein structures and low dimensionality of mechanical allosteric couplings. Proc. Natl Acad. Sci. USA 113, E5847–E5855 (2016).

    Article  ADS  Google Scholar 

  67. Qi, G., Lee, R. & Hayward, S. A comprehensive and non-redundant database of protein domain movements. Bioinformatics 21, 2832–2838 (2005).

    Article  Google Scholar 

  68. Eckmann, J. P., Rougemont, J. & Tlusty, T. Colloquium: proteins: the physics of amorphous evolving matter. Rev. Mod. Phys. 91, 031001 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  69. Gerstein, M. et al. Domain closure in lactoferrin: two hinges produce a see-saw motion between alternative close-packed interfaces. J. Mol. Biol. 234, 357–372 (1993).

    Article  Google Scholar 

  70. Wriggers, W., Chakravarty, S. & Jennings, P. A. Control of protein functional dynamics by peptide linkers. Biopolymers80, 736–746 (2005).

    Article  Google Scholar 

  71. Kenakin, T. & Miller, L. J. Seven transmembrane receptors as shapeshifting proteins: the impact of allosteric modulation and functional selectivity on new drug discovery. Pharmacol. Rev. 62, 265 (2010).

    Article  Google Scholar 

  72. Dobson, C. M. Hinge-bending and folding. Nature 348, 198–199 (1990).

    Article  ADS  Google Scholar 

  73. Anderson, C. M., Zucker, F. H. & Steitz, T. A. Space-filling models of kinase clefts and conformation changes. Science 204, 375–380 (1979).

    Article  ADS  Google Scholar 

  74. Rocks, J. W. et al. Designing allostery-inspired response in mechanical networks. Proc. Natl Acad. Sci. USA 114, 2520–2525 (2017).

    Article  ADS  Google Scholar 

  75. Stern, M., Liu, A. J. & Balasubramanian, V. Physical effects of learning. Phys. Rev. E 109, 024311 (2024).

    Article  ADS  Google Scholar 

  76. Yan, L., Ravasio, R., Brito, C. & Wyart, M. Architecture and coevolution of allosteric materials. Proc. Natl Acad. Sci. USA 114, 2526–2531 (2017).

    Article  ADS  Google Scholar 

  77. Landau, L. D., Pitaevskii, L. P., Kosevich, A. M. & Lifshitz, E. M. Theory of Elasticity Vol. 7 (Elsevier, 2012).

  78. Sartori, P. & Leibler, S. Evolutionary conservation of mechanical strain distributions in functional transitions of protein structures. Phys. Rev. X 14, 011042 (2024).

    Google Scholar 

  79. Qu, H. & Zocchi, G. How enzymes work: a look through the perspective of molecular viscoelastic properties. Phys. Rev. X 3, 011009 (2013).

    Google Scholar 

  80. Tseng, C.-Y., Wang, A. & Zocchi, G. Mechano-chemistry of the enzyme guanylate kinase. Europhys. Lett. 91, 18005 (2010).

    Article  ADS  Google Scholar 

  81. Wang, Y. & Zocchi, G. Elasticity of globular proteins measured from the a.c. susceptibility. Phys. Rev. Lett. 105, 238104 (2010).

    Article  ADS  Google Scholar 

  82. Joseph, C., Tseng, C. Y., Zocchi, G. & Tlusty, T. Asymmetric effect of mechanical stress on the forward and reverse reaction catalyzed by an enzyme. PLoS ONE 9, e101442 (2014).

    Article  ADS  Google Scholar 

  83. Singh, P., Abeysinghe, T. & Kohen, A. Linking protein motion to enzyme catalysis. Molecules 20, 1192–1209 (2015).

    Article  Google Scholar 

  84. Shaw, D. E. et al. Atomic-level characterization of the structural dynamics of proteins. Science 330, 341–346 (2010).

    Article  ADS  Google Scholar 

  85. Tirion, M. M. Large amplitude elastic motions in proteins from a single-parameter, atomic analysis. Phys. Rev. Lett. 77, 1905–1908 (1996).

    Article  ADS  Google Scholar 

  86. Flechsig, H. Design of elastic networks with evolutionary optimized long-range communication as mechanical models of allosteric proteins. Biophys. J. 113, 558–571 (2017).

    Article  ADS  Google Scholar 

  87. Tlusty, T. & Libchaber, A. Life sets off a cascade of machines. Proc. Natl Acad. Sci. USA 122, e2418000122 (2025).

    Article  Google Scholar 

  88. Otten, R. et al. Rescue of conformational dynamics in enzyme catalysis by directed evolution. Nat. Commun. 9, 1314 (2018).

    Article  ADS  Google Scholar 

  89. Garcia-Viloca, M., Gao, J., Karplus, M. & Truhlar, D. G. How enzymes work: analysis by modern rate theory and computer simulations. Science 303, 186–195 (2004).

    Article  ADS  Google Scholar 

  90. Nashine, V. C., Hammes-Schiffer, S. & Benkovic, S. J. Coupled motions in enzyme catalysis. Curr. Opin. Chem. Biol. 14, 644–651 (2010).

    Article  Google Scholar 

  91. Nagel, Z. D. & Klinman, J. P. A 21st century revisionist’s view at a turning point in enzymology. Nat. Chem. Biol. 5, 543–550 (2009).

    Article  Google Scholar 

  92. Kamerlin, S. C. L. & Warshel, A. At the dawn of the 21st century: is dynamics the missing link for understanding enzyme catalysis? Proteins 78, 1339–1375 (2010).

    Article  Google Scholar 

  93. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  ADS  Google Scholar 

  94. Sekulic, N., Shuvalova, L., Spangenberg, O., Konrad, M. & Lavie, A. Structural characterization of the closed conformation of mouse guanylate kinase. J. Biol. Chem. 277, 30236–30243 (2002).

    Article  Google Scholar 

  95. Delalande, O., Sacquin-Mora, S. & Baaden, M. Enzyme closure and nucleotide binding structurally lock guanylate kinase. Biophys. J. 101, 1440–1449 (2011).

    Article  ADS  Google Scholar 

  96. Wankowicz, S. A., de Oliveira, S. H., Hogan, D. W., van den Bedem, H. & Fraser, J. S. Ligand binding remodels protein side-chain conformational heterogeneity. eLife 11, e74114 (2022).

    Article  Google Scholar 

  97. Gunasekaran, K. & Nussinov, R. How different are structurally flexible and rigid binding sites? Sequence and structural features discriminating proteins that do and do not undergo conformational change upon ligand binding. J. Mol. Biol. 365, 257–273 (2007).

    Article  Google Scholar 

  98. Hible, G. et al. Unique GMP-binding site in Mycobacterium tuberculosis guanosine monophosphate kinase. Proteins 62, 489–500 (2006).

    Article  Google Scholar 

  99. Tang, Q.-Y. & Kaneko, K. Dynamics-evolution correspondence in protein structures. Phys. Rev. Lett. 127, 098103 (2021).

    Article  ADS  Google Scholar 

  100. Ferreiro, D. U., Komives, E. A. & Wolynes, P. G. Frustration in biomolecules. Q. Rev. Biophys. 47, 285–363 (2014).

    Article  Google Scholar 

  101. Agarwal, P. K., Billeter, S. R., Rajagopalan, P. T. R., Benkovic, S. J. & Hammes-Schiffer, S. Network of coupled promoting motions in enzyme catalysis. Proc. Natl Acad. Sci. USA 99, 2794–2799 (2002).

    Article  ADS  Google Scholar 

  102. Hanoian, P., Liu, C. T., Hammes-Schiffer, S. & Benkovic, S. Perspectives on electrostatics and conformational motions in enzyme catalysis. Acc. Chem. Res. 48, 482–489 (2015).

    Article  Google Scholar 

  103. Romero Romero, M. L. et al. Simple yet functional phosphate-loop proteins. Proc. Natl Acad. Sci. USA 115, E11943–E11950 (2018).

    Article  ADS  Google Scholar 

  104. Zaccai, G. How soft is a protein? A protein dynamics force constant measured by neutron scattering. Science 288, 1604–1607 (2000).

    Article  ADS  Google Scholar 

  105. Radmacher, M., Fritz, M., Cleveland, J. P., Walters, D. A. & Hansma, P. K. Imaging adhesion forces and elasticity of lysozyme adsorbed on mica with the atomic force microscope. Langmuir 10, 3809–3814 (1994).

    Article  Google Scholar 

  106. Cellmer, T., Henry, E. R., Hofrichter, J. & Eaton, W. A. Measuring internal friction of an ultrafast-folding protein. Proc. Natl Acad. Sci. USA 105, 18320–18325 (2008).

    Article  ADS  Google Scholar 

  107. Hagen, J. S. Solvent viscosity and friction in protein folding dynamics. Curr. Protein Pept. Sci. 11, 385–395 (2010).

    Article  ADS  Google Scholar 

  108. Soranno, A. et al. Quantifying internal friction in unfolded and intrinsically disordered proteins with single-molecule spectroscopy. Proc. Natl Acad. Sci. USA 109, 17800–17806 (2012).

    Article  ADS  Google Scholar 

  109. Chung, H. S., Piana-Agostinetti, S., Shaw, D. E. & Eaton, W. A. Structural origin of slow diffusion in protein folding. Science 349, 1504–1510 (2015).

    Article  ADS  Google Scholar 

  110. Rohs, R., Etchebest, C. & Lavery, R. Unraveling proteins: a molecular mechanics study. Biophys. J. 76, 2760–2768 (1999).

    Article  Google Scholar 

  111. Lu, H., Isralewitz, B., Krammer, A., Vogel, V. & Schulten, K. Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation. Biophys. J. 75, 662–671 (1998).

    Article  ADS  Google Scholar 

  112. Fisher, T. E., Oberhauser, A. F., Carrion-Vazquez, M., Marszalek, P. E. & Fernandez, J. M. The study of protein mechanics with the atomic force microscope. Trends Biochem. Sci. 24, 379–384 (1999).

    Article  Google Scholar 

  113. Radkiewicz, J. L. & Brooks, C. L. Protein dynamics in enzymatic catalysis: exploration of dihydrofolate reductase. J. Am. Chem. Soc. 122, 225–231 (2000).

    Article  Google Scholar 

  114. Kozlowski, R., Zhao, J. & Dyer, R. B. Acceleration of catalysis in dihydrofolate reductase by transient, site-specific photothermal excitation. Proc. Natl Acad. Sci. USA 118, e2014592118 (2021).

    Article  Google Scholar 

  115. Campbell, E. et al. The role of protein dynamics in the evolution of new enzyme function. Nat. Chem. Biol. 12, 944–950 (2016).

    Article  Google Scholar 

  116. Palmer, A. G. Enzyme dynamics from NMR spectroscopy. Acc. Chem. Res. 48, 457–465 (2015).

    Article  Google Scholar 

  117. Haliloglu, T. & Bahar, I. Adaptability of protein structures to enable functional interactions and evolutionary implications. Curr. Opin. Struct. Biol. 35, 17–23 (2015).

    Article  Google Scholar 

  118. Thomson, W. IV. On the elasticity and viscosity of metals. Proc. R. Soc. Lond. 14, 289–297 (1865).

    Article  Google Scholar 

  119. Voigt, W. Ueber die innere Reibung der festen Körper, insbesondere der Krystalle. Abh. Königl. Ges. Wiss. Göttingen 36, 3–48 (1890).

    Google Scholar 

  120. Alavi, Z. & Zocchi, G. Dissipation at the ångström scale: probing the surface and interior of an enzyme. Phys. Rev. E 97, 052402 (2018).

    Article  ADS  Google Scholar 

  121. Maxwell, J. C. IV. On the dynamical theory of gases. Philos. Trans. R. Soc. Lond 157, 49–88 (1867).

    ADS  Google Scholar 

  122. Rouviere, E., Ranganathan, R. & Rivoire, O. Emergence of single- versus multi-state allostery. PRX Life 1, 023004 (2023).

    Article  Google Scholar 

  123. Henzler-Wildman, K. et al. Intrinsic motions along an enzymatic reaction trajectory. Nature 450, 838–844 (2007).

    Article  ADS  Google Scholar 

  124. Frederick, K. K., Marlow, M. S., Valentine, K. G. & Wand, A. J. Conformational entropy in molecular recognition by proteins. Nature 448, 325–329 (2007).

    Article  ADS  Google Scholar 

  125. Callender, R. & Dyer, R. B. The dynamical nature of enzymatic catalysis. Acc. Chem. Res. 48, 407–413 (2015).

    Article  Google Scholar 

  126. Schwartz, S. D. Protein dynamics and enzymatic catalysis. J. Phys. Chem. B 127, 2649–2660 (2023).

    Article  Google Scholar 

  127. Koshland, D. E. Conformational changes: how small is big enough? Nat. Med. 4, 1112–1114 (1998).

    Article  Google Scholar 

  128. Mesecar, A. D., Stoddard, B. L. & Koshland, D. E. Orbital steering in the catalytic power of enzymes: small structural changes with large catalytic consequences. Science 277, 202 (1997).

    Article  Google Scholar 

  129. Qu, H., Landy, J. & Zocchi, G. Cracking phase diagram for the dynamics of an enzyme. Phys. Rev. E 86, 041915 (2012).

    Article  ADS  Google Scholar 

  130. Savir, Y., Noor, E., Milo, R. & Tlusty, T. Cross-species analysis traces adaptation of Rubisco toward optimality in a low-dimensional landscape. Proc. Natl Acad. Sci. USA 107, 3475–3480 (2010).

    Article  ADS  Google Scholar 

  131. Frey, S. & Görlich, D. A new set of highly efficient, tag-cleaving proteases for purifying recombinant proteins. J. Chromatogr. A 1337, 95–105 (2014).

    Article  Google Scholar 

  132. Unger, T., Jacobovitch, Y., Dantes, A., Bernheim, R. & Peleg, Y. Applications of the Restriction Free (RF) cloning procedure for molecular manipulations and protein expression. J. Struct. Biol. 172, 34–44 (2010).

    Article  Google Scholar 

  133. Erijman, A., Dantes, A., Bernheim, R., Shifman, J. M. & Peleg, Y. Transfer-PCR (TPCR): a highway for DNA cloning and protein engineering. J. Struct. Biol. 175, 171–177 (2011).

    Article  Google Scholar 

  134. Alavi, Z., Ariyaratne, A. & Zocchi, G. Nano-rheology measurements reveal that the hydration layer of enzymes partially controls conformational dynamics. Appl. Phys. Lett. 106, 203702 (2015).

    Article  ADS  Google Scholar 

  135. Berens, P. CircStat: a MATLAB toolbox for circular statistics. J. Stat. Softw. 31, 1–21 (2009).

  136. Motulsky, H. J. Prism 5 Statistics Guide (GraphPad Software, 2007); https://www.graphpad.com/

  137. Kabsch, W. A solution for the best rotation to relate two sets of vectors. Acta Cryst. A32, 922–923 (1976).

    Article  Google Scholar 

  138. Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).

  139. Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).

    Article  Google Scholar 

  140. Zhang, Y. & Skolnick, J. Scoring function for automated assessment of protein structure template quality. Proteins 57, 702–710 (2004).

    Article  Google Scholar 

  141. Xu, J. & Zhang, Y. How significant is a protein structure similarity with TM-score = 0.5? Bioinformatics 26, 889–895 (2010).

    Article  Google Scholar 

  142. Agarwal, K. C., Miech, R. P. & Parks, R. E. Guanylate kinases from human erythrocytes, hog brain, and rat liver. Methods Enzymol. 51, 483–490 (1978).

  143. Lidmar, J. Improving the efficiency of extended ensemble simulations: the accelerated weight histogram method. Phys. Rev. E 85, 056708 (2012).

    Article  ADS  Google Scholar 

  144. Lindahl, V., Lidmar, J. & Hess, B. Accelerated weight histogram method for exploring free energy landscapes. J. Chem. Phys. 141, 044110 (2014).

    Article  ADS  Google Scholar 

  145. Skjærven, L., Yao, X.-Q., Scarabelli, G. & Grant, B. J. Integrating protein structural dynamics and evolutionary analysis with Bio3D. BMC Bioinf. 15, 399 (2014).

    Article  Google Scholar 

  146. Sethi, A., Eargle, J., Black, A. A. & Luthey-Schulten, Z. Dynamical networks in tRNA:protein complexes. Proc. Natl Acad. Sci. USA 106, 6620–6625 (2009).

    Article  ADS  Google Scholar 

  147. Bakan, A., Meireles, L. M. & Bahar, I. ProDy: protein dynamics inferred from theory and experiments. Bioinformatics 27, 1575–1577 (2011).

    Article  Google Scholar 

  148. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    Article  Google Scholar 

  149. Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. https://doi.org/10.1002/pro.3235 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea Grants NRF-RS-2025-00573354 funded by the Ministry of Science and ICT, and by the Institute for Basic Science, Project Code IBS-R020-D1. This work was supported by the Institute for Basic Science, Project Code IBS-R020-D1. E.M. and E.W. were supported in part by the Israel Science Foundation (grant no. 2767/20) and the Minerva Stiftung, Germany. J.-P.E. was partially supported by the Fonds National Suisse Swissmap. S.L.’s research is funded by M. de Botton and the Jacqueline and Marc Leland Foundation. We thank S. Sacquin-Mora and M. Baaden for providing the results of MD simulations of guanylate kinase bound to ADP, GDP and Mg.

Author information

Authors and Affiliations

Authors

Contributions

E.W.: conceptualization, methodology, software, formal analysis, investigation, visualization, writing (original draft). J.M.M.: methodology, software, formal analysis, investigation, visualization, writing (original draft). M.S.: methodology, investigation, visualization. J.R.: methodology, software, formal analysis. R.R.: conceptualization, methodology. Y.P.: methodology, resources, writing (original draft). T.U.: methodology, resources, writing (original draft). S.A.: methodology, resources, writing (original draft). Y.F.-S.: methodology, resources, investigation. S.L.: methodology, formal analysis, investigation, visualization. J.L.S.: methodology, resources, funding acquisition, writing (original draft). B.A.G.: supervision, resources. G.Z.: conceptualization, methodology, supervision. J.-P.E.: conceptualization, methodology, software, formal analysis, writing (original draft), supervision. E.M.: conceptualization, methodology, software, formal analysis, investigation, funding acquisition, writing (original draft), supervision. T.T.: conceptualization, methodology, software, formal analysis, funding acquisition, writing (original draft), supervision. All authors: writing (review and editing).

Corresponding authors

Correspondence to Elisha Moses or Tsvi Tlusty.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Dan Thomas Major, Qian-Yuan Tang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Strain analysis of alternate guanylate kinase structures.

a - Comparison of guanylate kinase structures before and after binding, colored by strain (residues with strain lower than median are grey, otherwise red). The same apo structure (1ZNW) is shown for all cases (differences between WT and WT* are not observable by eye). The holo structures are: PDB (1ZNY), WT bound to GDP; MD, WT bound to GDP, ADP and Mg; AF3, WT* bound to GDP, ADP and Mg. b - Strain due to binding for PDB, MD and AF3 structures (see ‘Strain evaluation and AlphaFold2 (AF) Analysis’ section of the Methods, and ‘Alternative calculations of binding strain’ section of the Supplementary Information). Locations of mutated sites for our 34 mutants are shown with black circles, with the groups indicated by colored circles; strain thresholds delineating High-Strain and Control groups are 0.04, 0.125 and 0.07.

Extended Data Fig. 2 Sequences of wild-type (WT) guanylate kinase and the cysteine-substituted variant (WT*).

Sequence alignment of the wild-type (WT) sequence with the sequence of the cysteine-substituted construct (WT*) which was used as the basis of all of our experiments and the 34 variants.

Extended Data Fig. 3 Nano-rheology for individual mutants.

Same as in Fig. 3a (a: phase vs frequency) and Fig. 3c (b: amplitude vs frequency), with curves shown for the individual mutants. Each curve represents the mean over all measurement days for an individual mutant, as specified in the Methods. Error bars show the standard error of the mean (No error bars are shown where only one measurement day was used). Mutants from the High-Strain, Control, and Binding groups are shown in reds, blues, and greens respectively. The number of measurements averaged for each mutant is detailed in Extended Data Table 1.

Extended Data Fig. 4 Effective potential-of-force profiles of cysteine-cysteine distances.

The potential of mean force (PMF) profiles for distance change between C75 and C171, calculated using the accelerated weight histogram method143,144 for the wild type (WT* - black), high-strain (E173N - red), and control (G62S - blue) mutants. Standard deviation is shown shaded and is calculated for 5 slices separated by 10 ns. The spring constants κ for the different mutants can be estimated using a second order fit to the PMF curves ΔG = ½ κ dx2 for small deviations from the minimum. The resultant spring constants are 200, 260 and 500 pN/nm respectively for the WT, G62S and E173N mutants. Errors in the fits are ~10%. This is consistent with both the MD pulling simulations (Fig. 4a) and the experimentally observed stiffer response of the E173N mutant to the pulling force.

Extended Data Fig. 5 Enzymatic activity for each mutant - with data points.

Same as shown in Fig. 5a, with individual data points added. Box-plot elements: center line, median; box-limits, upper and lower quartiles; whiskers, 1.5x interquartile range or the data range, whichever is lower. The number of measurements for each mutant is detailed in Extended Data Table 1.

Extended Data Fig. 6 Strain versus distance from binding sites.

a - Shortest distance from each residue’s Cα position to GDP versus ADP; mutated residues are highlighted, and colored by group. b - Strain versus the minimum distance to either GDP, ADP or Mg.

Extended Data Fig. 7 Melting temperature Tm versus enzymatic activity.

Enzymatic activity, normalized by wild type (WT*), versus melting temperature (Tm). We observe no dependence of activity on stability. Black line represents the fit to a power function. Pearson’s correlation coefficient r = 0.06 p = 0.83 (n = 17). Tm values for the individual mutants are detailed in Extended Data Table 1.

Extended Data Fig. 8 Enzymatic activity with different strain calculations.

a - Activity of variants, depicted according to different High-Strain / Control groupings according to different strain calculations: PDB, MD, AF3 (Extended Data Fig. 1). b, c - Strain - activity regression plots for different strain calculations, with (b) and without (c) mutants from the Binding group for PDB (left), MD (middle), and AF3 (right) calculations. Pearson’s correlation coefficients and p-values are displayed on the graphs. Sample sizes are 25 (B) and 34 (C). The number of measurements averaged for each mutant is detailed in Extended Data Table 1. All error bars show mean ± standard error. Variants are grouped according to the thresholds given in the caption of Extended Data Fig. 1.

Extended Data Fig. 9 Nano-rheology with groups chosen using different strain calculations.

a–c - Nano-rheology amplitude-phase response, as shown in Fig. 3e, depicted according to the different High-Strain / Control groupings generated by the different strain calculations (see also Extended Data Figs. 1 and 8). Groups, sample sizes, and error bar calculations same as in Fig. 3a. Error bars show mean ± standard error.

Extended Data Table 1 Mutant details and measurements

Supplementary information

Supplementary Information

Supplementary Texts 1–5 and Figs. 1–13.

Reporting Summary

Supplementary Data 1

Data for nano-rheology and enzymatic activity experiments.

Supplementary Video 1

Wild-type guanylate kinase bound to GDP, ADP and Mg, morphing between closed and open (1ZNW) conformations. Created using the morph command in ChimeraX149.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weinreb, E., McBride, J.M., Siek, M. et al. Enzymes as viscoelastic catalytic machines. Nat. Phys. 21, 787–798 (2025). https://doi.org/10.1038/s41567-025-02825-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-025-02825-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing