Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The dependence of viral RNA replication on co-opted host factors

Key Points

  • Positive-strand RNA ((+)RNA) viruses are major pathogens of humans, animals and plants. These viruses actively reprogramme the host cell metabolism to support the infection process and to allow viruses to escape or suppress host defence mechanisms.

  • To facilitate RNA replication, (+)RNA viruses interact with numerous host molecules via protein–protein, RNA–protein and protein–lipid interactions. These interactions are crucial for the formation of viral replication organelles, which produce new viral RNA progeny in host cells.

  • All characterized (+)RNA viruses assemble viral replication complexes, containing both viral and host proteins, on intracellular membranes. The subverted host factors play crucial parts in all steps of (+)RNA virus replication. Therefore, host factors are key determinants of viral pathology as well as viral evolution.

  • As there can be ∼20,000–30,000 different proteins in a typical eukaryotic cell, identifying all the proteins that are subverted by a given (+)RNA virus is a daunting task. Genome-wide and global proteomics approaches have recently emerged as a powerful means to identify the host factors involved in (+)RNA virus replication.

  • An emerging theme from the genome-wide screens is that many of the host proteins subverted for (+)RNA virus replication are unique for a given virus. This suggests that (+)RNA viruses have evolved different ways to utilize host cell resources.

  • In spite of the diverse sets of host factors co-opted by various viruses, functional and mechanistic studies suggest that different host proteins provide similar functions during viral RNA replication.

  • Common host factors that are recruited by (+)RNA viruses for their replication include: RNA-binding proteins that facilitate viral RNA synthesis; proteins involved in membrane bending that contribute to the formation of membrane-bound replication complexes; lipid synthesis enzymes that affect lipid composition and have a role in making a favourable microenvironment for viral replication; and chaperones and prolyl isomerases that facilitate the proper folding and functions of viral replication proteins during assembly of the viral replication complexes.

Abstract

Positive-sense RNA ((+)RNA) viruses such as hepatitis C virus exploit host cells by subverting host proteins, remodelling subcellular membranes, co-opting and modulating protein and ribonucleoprotein complexes, and altering cellular metabolic pathways during infection. To facilitate RNA replication, (+)RNA viruses interact with numerous host molecules through protein–protein, RNA–protein and protein–lipid interactions. These interactions lead to the formation of viral replication complexes, which produce new viral RNA progeny in host cells. This Review presents the recent progress that has been made in understanding the role of co-opted host proteins and membranes during (+)RNA virus replication, and discusses common themes employed by different viruses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic infection cycle of positive-sense RNA viruses.
Figure 2: Remodelling the cellular secretory pathway to support human poliovirus replication.
Figure 3: Structures of the flavivirus replication complexes.
Figure 4: Proposed remodelling of the endoplasmic reticulum-associated protein degradation tuning pathway during coronavirus replication.
Figure 5: Functions of host factors during tombusvirus replication in Saccharomyces cerevisiae.

Similar content being viewed by others

References

  1. Ahlquist, P., Noueiry, A. O., Lee, W. M., Kushner, D. B. & Dye, B. T. Host factors in positive-strand RNA virus genome replication. J. Virol. 77, 8181–8186 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nagy, P. D. Yeast as a model host to explore plant virus-host interactions. Annu. Rev. Phytopathol. 46, 217–242 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Novoa, R. R. et al. Virus factories: associations of cell organelles for viral replication and morphogenesis. Biol. Cell 97, 147–172 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Miller, S. & Krijnse-Locker, J. Modification of intracellular membrane structures for virus replication. Nature Rev. Microbiol. 6, 363–374 (2008).

    Article  CAS  Google Scholar 

  5. Ahlquist, P. RNA-dependent RNA polymerases, viruses, and RNA silencing. Science 296, 1270–1273 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Buck, K. W. Comparison of the replication of positive-stranded RNA viruses of plants and animals. Adv. Virus Res. 47, 159–251 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Noueiry, A. O. & Ahlquist, P. Brome mosaic virus RNA replication: revealing the role of the host in RNA virus replication. Annu. Rev. Phytopathol. 41, 77–98 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Nagy, P. D. & Pogany, J. Yeast as a model host to dissect functions of viral and host factors in tombusvirus replication. Virology 344, 211–220 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Shi, S. T. & Lai, M. M. Viral and cellular proteins involved in coronavirus replication. Curr. Top. Microbiol. Immunol. 287, 95–131 (2005).

    CAS  PubMed  Google Scholar 

  10. Strauss, J. H. & Strauss, E. G. Viral RNA replication. With a little help from the host. Science 283, 802–804 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Spuul, P. et al. Assembly of alphavirus replication complexes from RNA and protein components in a novel trans-replication system in mammalian cells. J. Virol. 85, 4739–4751 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Frolova, E. I., Gorchakov, R., Pereboeva, L., Atasheva, S. & Frolov, I. Functional Sindbis virus replicative complexes are formed at the plasma membrane. J. Virol. 84, 11679–11695 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Spuul, P., Balistreri, G., Kaariainen, L. & Ahola, T. Phosphatidylinositol 3-kinase-, actin-, and microtubule-dependent transport of Semliki Forest Virus replication complexes from the plasma membrane to modified lysosomes. J. Virol. 84, 7543–7557 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nagy, P. D. & Pogany, J. Global genomics and proteomics approaches to identify host factors as targets to induce resistance against Tomato bushy stunt virus. Adv. Virus Res. 76, 123–177 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Denison, M. R. Seeking membranes: positive-strand RNA virus replication complexes. PLoS Biol. 6, e270 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cherry, S. et al. COPI activity coupled with fatty acid biosynthesis is required for viral replication. PLoS Pathog. 2, e102 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Egger, D. & Bienz, K. Intracellular location and translocation of silent and active poliovirus replication complexes. J. Gen. Virol. 86, 707–718 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Kirkegaard, K. & Jackson, W. T. Topology of double-membraned vesicles and the opportunity for non-lytic release of cytoplasm. Autophagy 1, 182–184 (2005).

    Article  PubMed  Google Scholar 

  19. Rust, R. C. et al. Cellular COPII proteins are involved in production of the vesicles that form the poliovirus replication complex. J. Virol. 75, 9808–9818 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. den Boon, J. A., Diaz, A. & Ahlquist, P. Cytoplasmic viral replication complexes. Cell Host Microbe 8, 77–85 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Brinton, M. A. Host factors involved in West Nile virus replication. Ann. NY Acad. Sci. 951, 207–219 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Salonen, A., Ahola, T. & Kaariainen, L. Viral RNA replication in association with cellular membranes. Curr. Top. Microbiol. Immunol. 285, 139–173 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Jiang, Y., Serviene, E., Gal, J., Panavas, T. & Nagy, P. D. Identification of essential host factors affecting tombusvirus RNA replication based on the yeast Tet promoters Hughes Collection. J. Virol. 80, 7394–7404 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Panavas, T., Serviene, E., Brasher, J. & Nagy, P. D. Yeast genome-wide screen reveals dissimilar sets of host genes affecting replication of RNA viruses. Proc. Natl Acad. Sci. USA 102, 7326–7331 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Serviene, E., Jiang, Y., Cheng, C. P., Baker, J. & Nagy, P. D. Screening of the yeast yTHC collection identifies essential host factors affecting tombusvirus RNA recombination. J. Virol. 80, 1231–1241 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cheng, C. P., Serviene, E. & Nagy, P. D. Suppression of viral RNA recombination by a host exoribonuclease. J. Virol. 80, 2631–2640 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Serviene, E. et al. Genome-wide screen identifies host genes affecting viral RNA recombination. Proc. Natl Acad. Sci. USA 102, 10545–10550 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kushner, D. B. et al. Systematic, genome-wide identification of host genes affecting replication of a positive-strand RNA virus. Proc. Natl Acad. Sci. USA 100, 15764–15769 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cherry, S. et al. Genome-wide RNAi screen reveals a specific sensitivity of IRES-containing RNA viruses to host translation inhibition. Genes Dev. 19, 445–452 (2005). References 24, 28 and 29 describe the first genome-wide screens to identify host factors affecting (+)RNA virus replication.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Krishnan, M. N. et al. RNA interference screen for human genes associated with West Nile virus infection. Nature 455, 242–245 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sessions, O. M. et al. Discovery of insect and human dengue virus host factors. Nature 458, 1047–1050 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ng, T. I. et al. Identification of host genes involved in hepatitis C virus replication by small interfering RNA technology. Hepatology 45, 1413–1421 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Li, Q. et al. A genome-wide genetic screen for host factors required for hepatitis C virus propagation. Proc. Natl Acad. Sci. USA 106, 16410–16415 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tai, A. W. et al. A functional genomic screen identifies cellular cofactors of hepatitis C virus replication. Cell Host Microbe 5, 298–307 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Supekova, L. et al. Identification of human kinases involved in hepatitis C virus replication by small interference RNA library screening. J. Biol. Chem. 283, 29–36 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Randall, G. et al. Cellular cofactors affecting hepatitis C virus infection and replication. Proc. Natl Acad. Sci. USA 104, 12884–12889 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vaillancourt, F. H. et al. Identification of a lipid kinase as a host factor involved in hepatitis C virus RNA replication. Virology 387, 5–10 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. de Chassey, B. et al. Hepatitis C virus infection protein network. Mol. Syst. Biol. 4, 230 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li, H. P., Zhang, X., Duncan, R., Comai, L. & Lai, M. M. Heterogeneous nuclear ribonucleoprotein A1 binds to the transcription-regulatory region of mouse hepatitis virus RNA. Proc. Natl Acad. Sci. USA 94, 9544–9549 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nanda, S. K. & Leibowitz, J. L. Mitochondrial aconitase binds to the 3′ untranslated region of the mouse hepatitis virus genome. J. Virol. 75, 3352–3362 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Spagnolo, J. F. & Hogue, B. G. Host protein interactions with the 3′ end of bovine coronavirus RNA and the requirement of the poly(A) tail for coronavirus defective genome replication. J. Virol. 74, 5053–5065 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li, W. et al. Cell proteins TIA-1 and TIAR interact with the 3′ stem-loop of the West Nile virus complementary minus-strand RNA and facilitate virus replication. J. Virol. 76, 11989–12000 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Burnham, A. J., Gong, L. & Hardy, R. W. Heterogeneous nuclear ribonuclear protein K interacts with Sindbis virus nonstructural proteins and viral subgenomic mRNA. Virology 367, 212–221 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Frolova, E. et al. Formation of nsP3-specific protein complexes during Sindbis virus replication. J. Virol. 80, 4122–4134 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhu, J. et al. RNA-binding proteins that inhibit RNA virus infection. Proc. Natl Acad. Sci. USA 104, 3129–3134 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li, Z. et al. Translation elongation factor 1A is a component of the tombusvirus replicase complex and affects the stability of the p33 replication co-factor. Virology 385, 245–260 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Berger, K. L. & Randall, G. Potential roles for cellular cofactors in hepatitis C virus replication complex formation. Commun. Integr. Biol. 2, 471–473 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Fernandez-Garcia, M. D., Mazzon, M., Jacobs, M. & Amara, A. Pathogenesis of flavivirus infections: using and abusing the host cell. Cell Host Microbe 5, 318–328 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Heaton, N. S. & Randall, G. Dengue virus-induced autophagy regulates lipid metabolism. Cell Host Microbe 8, 422–432 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jopling, C. L., Yi, M., Lancaster, A. M., Lemon, S. M. & Sarnow, P. Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA. Science 309, 1577–1581 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Diaz, A., Wang, X. & Ahlquist, P. Membrane-shaping host reticulon proteins play crucial roles in viral RNA replication compartment formation and function. Proc. Natl Acad. Sci. USA 107, 16291–16296 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Barajas, D., Jiang, Y. & Nagy, P. D. A unique role for the host ESCRT proteins in replication of Tomato bushy stunt virus. PLoS Pathog. 5, e1000705 (2009). References 51 and 52 show that the subversion of host membrane-deforming proteins is important for (+)RNA virus replication.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jaag, H. M., Pogany, J. & Nagy, P. D. A host Ca2+/Mn2+ ion pump is a factor in the emergence of viral RNA recombinants. Cell Host Microbe 7, 74–81 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Gamarnik, A. V. & Andino, R. Switch from translation to RNA replication in a positive-stranded RNA virus. Genes Dev. 12, 2293–2304 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gamarnik, A. V. & Andino, R. Interactions of viral protein 3CD and poly(rC) binding protein with the 5′ untranslated region of the poliovirus genome. J. Virol. 74, 2219–2226 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Osman, T. A. & Buck, K. W. Identification of a region of the tobacco mosaic virus 126- and 183-kilodalton replication proteins which binds specifically to the viral 3′-terminal tRNA-like structure. J. Virol. 77, 8669–8675 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang, X. et al. Brome mosaic virus 1a nucleoside triphosphatase/helicase domain plays crucial roles in recruiting RNA replication templates. J. Virol. 79, 13747–13758 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Van Wynsberghe, P. M. & Ahlquist, P. 5′ cis elements direct nodavirus RNA1 recruitment to mitochondrial sites of replication complex formation. J. Virol. 83, 2976–2988 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pogany, J., White, K. A. & Nagy, P. D. Specific binding of tombusvirus replication protein p33 to an internal replication element in the viral RNA is essential for replication. J. Virol. 79, 4859–4869 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Perera, R., Daijogo, S., Walter, B. L., Nguyen, J. H. & Semler, B. L. Cellular protein modification by poliovirus: the two faces of poly(rC)-binding protein. J. Virol. 81, 8919–8932 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Walter, B. L., Parsley, T. B., Ehrenfeld, E. & Semler, B. L. Distinct poly(rC) binding protein KH domain determinants for poliovirus translation initiation and viral RNA replication. J. Virol. 76, 12008–12022 (2002). References 59, 60 and 61 demonstrate the use of host proteins to facilitate viral translation and replication.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Herold, J. & Andino, R. Poliovirus RNA replication requires genome circularization through a protein–protein bridge. Mol. Cell 7, 581–591 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Vogt, D. A. & Andino, R. An RNA element at the 5′-end of the poliovirus genome functions as a general promoter for RNA synthesis. PLoS Pathog. 6, e1000936 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yamanaka, T. et al. Complete inhibition of tobamovirus multiplication by simultaneous mutations in two homologous host genes. J. Virol. 76, 2491–2497 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yamanaka, T. et al. TOM1, an Arabidopsis gene required for efficient multiplication of a tobamovirus, encodes a putative transmembrane protein. Proc. Natl Acad. Sci. USA 97, 10107–10112 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tu, H. et al. Hepatitis C virus RNA polymerase and NS5A complex with a SNARE-like protein. Virology 263, 30–41 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Gao, L., Aizaki, H., He, J. W. & Lai, M. M. Interactions between viral nonstructural proteins and host protein hVAP-33 mediate the formation of hepatitis C virus RNA replication complex on lipid raft. J. Virol. 78, 3480–3488 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Aizaki, H., Lee, K. J., Sung, V. M., Ishiko, H. & Lai, M. M. Characterization of the hepatitis C virus RNA replication complex associated with lipid rafts. Virology 324, 450–461 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Wang, C. et al. Identification of FBL2 as a geranylgeranylated cellular protein required for hepatitis C virus RNA replication. Mol. Cell 18, 425–434 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Wei, T. et al. Sequential recruitment of the endoplasmic reticulum and chloroplasts for plant potyvirus replication. J. Virol. 84, 799–809 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Cotton, S. et al. Turnip mosaic virus RNA replication complex vesicles are mobile, align with microfilaments, and are each derived from a single viral genome. J. Virol. 83, 10460–10471 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Beckham, C. J. et al. Interactions between brome mosaic virus RNAs and cytoplasmic processing bodies. J. Virol. 81, 9759–9768 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pathak, K. B., Sasvari, Z. & Nagy, P. D. The host Pex19p plays a role in peroxisomal localization of tombusvirus replication proteins. Virology 379, 294–305 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Wang, R. Y., Stork, J., Pogany, J. & Nagy, P. D. A temperature sensitive mutant of heat shock protein 70 reveals an essential role during the early steps of tombusvirus replication. Virology 394, 28–38 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Wang, R. Y., Stork, J. & Nagy, P. D. A key role for heat shock protein 70 in the localization and insertion of tombusvirus replication proteins to intracellular membranes. J. Virol. 83, 3276–3287 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Jonczyk, M., Pathak, K. B., Sharma, M. & Nagy, P. D. Exploiting alternative subcellular location for replication: tombusvirus replication switches to the endoplasmic reticulum in the absence of peroxisomes. Virology 362, 320–330 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Panavas, T., Hawkins, C. M., Panaviene, Z. & Nagy, P. D. The role of the p33:p33/p92 interaction domain in RNA replication and intracellular localization of p33 and p92 proteins of Cucumber necrosis tombusvirus. Virology 338, 81–95 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Quinkert, D., Bartenschlager, R. & Lohmann, V. Quantitative analysis of the hepatitis C virus replication complex. J. Virol. 79, 13594–13605 (2005). This article provides a detailed study on the composition of the HCV replicase complex.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kopek, B. G., Perkins, G., Miller, D. J., Ellisman, M. H. & Ahlquist, P. Three-dimensional analysis of a viral RNA replication complex reveals a virus-induced mini-organelle. PLoS Biol. 5, e220 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. McCartney, A. W., Greenwood, J. S., Fabian, M. R., White, K. A. & Mullen, R. T. Localization of the tomato bushy stunt virus replication protein p33 reveals a peroxisome-to-endoplasmic reticulum sorting pathway. Plant Cell 17, 3513–3531 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Schwartz, M. et al. A positive-strand RNA virus replication complex parallels form and function of retrovirus capsids. Mol. Cell 9, 505–514 (2002). References 79 and 81 present electron tomography of the viral replicases.

    Article  CAS  PubMed  Google Scholar 

  82. Hsu, N. Y. et al. Viral reorganization of the secretory pathway generates distinct organelles for RNA replication. Cell 141, 799–811 (2010). This report provides evidence for the recruitment of a host lipid biosynthesis enzyme to the viral replicase.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Belov, G. A. & Ehrenfeld, E. Involvement of cellular membrane traffic proteins in poliovirus replication. Cell Cycle 6, 36–38 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Belov, G. A., Habbersett, C., Franco, D. & Ehrenfeld, E. Activation of cellular Arf GTPases by poliovirus protein 3CD correlates with virus replication. J. Virol. 81, 9259–9267 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Berger, K. L. et al. Roles for endocytic trafficking and phosphatidylinositol 4-kinase III alpha in hepatitis C virus replication. Proc. Natl Acad. Sci. USA 106, 7577–7582 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Borawski, J. et al. Class III phosphatidylinositol 4-kinase alpha and beta are novel host factor regulators of hepatitis C virus replication. J. Virol. 83, 10058–10074 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Reiss, S. et al. Recruitment and activation of a lipid kinase by hepatitis C virus NS5A is essential for integrity of the membranous replication compartment. Cell Host Microbe 9, 32–45 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Amako, Y., Sarkeshik, A., Hotta, H., Yates, J. 3rd & Siddiqui, A. Role of oxysterol binding protein in hepatitis C virus infection. J. Virol. 83, 9237–9246 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Knoops, K. et al. SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum. PLoS Biol. 6, e226 (2008). This study uses electron tomography and three-dimensional imaging to show coronavirus-induced DMVs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Reggiori, F. et al. Coronaviruses hijack the LC3-I-positive EDEMosomes, ER-derived vesicles exporting short-lived ERAD regulators, for replication. Cell Host Microbe 7, 500–508 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Heaton, N. S. et al. Dengue virus nonstructural protein 3 redistributes fatty acid synthase to sites of viral replication and increases cellular fatty acid synthesis. Proc. Natl Acad. Sci. USA 107, 17345–17350 (2010). This work uncovers the fact that DENV co-opts the fatty acid biosynthesis pathway to establish VRCs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lee, W. M. & Ahlquist, P. Membrane synthesis, specific lipid requirements, and localized lipid composition changes associated with a positive-strand RNA virus RNA replication protein. J. Virol. 77, 12819–12828 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Navarro, B., Russo, M., Pantaleo, V. & Rubino, L. Cytological analysis of Saccharomyces cerevisiae cells supporting cymbidium ringspot virus defective interfering RNA replication. J. Gen. Virol. 87, 705–714 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Sharma, M., Sasvari, Z. & Nagy, P. D. Inhibition of sterol biosynthesis reduces tombusvirus replication in yeast and plants. J. Virol. 84, 2270–2281 (2010).

    Article  CAS  PubMed  Google Scholar 

  95. Bloch, K. Sterol molecule: structure, biosynthesis, and function. Steroids 57, 378–383 (1992).

    Article  CAS  PubMed  Google Scholar 

  96. Bloch, K. E. Sterol structure and membrane function. CRC Crit. Rev. Biochem. 14, 47–92 (1983).

    Article  CAS  PubMed  Google Scholar 

  97. Chang, K. O. Role of cholesterol pathways in norovirus replication. J. Virol. 83, 8587–8595 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Rothwell, C. et al. Cholesterol biosynthesis modulation regulates dengue viral replication. Virology 389, 8–19 (2009).

    Article  CAS  PubMed  Google Scholar 

  99. Mackenzie, J. M., Khromykh, A. A. & Parton, R. G. Cholesterol manipulation by West Nile virus perturbs the cellular immune response. Cell Host Microbe 2, 229–239 (2007). This investigation finds that WNV modulates host cell cholesterol homeostasis by upregulating cholesterol biosynthesis and redistributing cholesterol to viral replication membranes.

    Article  CAS  PubMed  Google Scholar 

  100. Sagan, S. M. et al. The influence of cholesterol and lipid metabolism on host cell structure and hepatitis C virus replication. Biochem. Cell Biol. 84, 67–79 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Kapadia, S. B. & Chisari, F. V. Hepatitis C virus RNA replication is regulated by host geranylgeranylation and fatty acids. Proc. Natl Acad. Sci. USA 102, 2561–2566 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Nohturfft, A. & Zhang, S. C. Coordination of lipid metabolism in membrane biogenesis. Annu. Rev. Cell Dev. Biol. 25, 539–566 (2009).

    Article  CAS  PubMed  Google Scholar 

  103. Palomares-Jerez, M. F. & Villalain, J. Membrane interaction of segment H1 (NS4BH1) from hepatitis C virus non-structural protein 4B. Biochim. Biophys. Acta 1808, 1219–1229 (2011).

    Article  CAS  PubMed  Google Scholar 

  104. Stapleford, K. A., Rapaport, D. & Miller, D. J. Mitochondrion-enriched anionic phospholipids facilitate flock house virus RNA polymerase membrane association. J. Virol. 83, 4498–4507 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ahola, T., Lampio, A., Auvinen, P. & Kaariainen, L. Semliki Forest virus mRNA capping enzyme requires association with anionic membrane phospholipids for activity. EMBO J. 18, 3164–3172 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Sharma, M., Sasvari, Z. & Nagy, P. D. Inhibition of phospholipid biosynthesis decreases the activity of the tombusvirus replicase and alters the subcellular localization of replication proteins. Virology 145, 141–152 (2011).

    Article  CAS  Google Scholar 

  107. Castorena, K. M., Stapleford, K. A. & Miller, D. J. Complementary transcriptomic, lipidomic, and targeted functional genetic analyses in cultured Drosophila cells highlight the role of glycerophospholipid metabolism in Flock House virus RNA replication. BMC Genomics 11, 183 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Slagsvold, T., Pattni, K., Malerod, L. & Stenmark, H. Endosomal and non-endosomal functions of ESCRT proteins. Trends Cell Biol. 16, 317–326 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Hurley, J. H. & Emr, S. D. The ESCRT complexes: structure and mechanism of a membrane-trafficking network. Annu. Rev. Biophys. Biomol. Struct. 35, 277–298 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Katzmann, D. J., Odorizzi, G. & Emr, S. D. Receptor downregulation and multivesicular-body sorting. Nature Rev. Mol. Cell Biol. 3, 893–905 (2002).

    Article  CAS  Google Scholar 

  111. Bowers, K. & Stevens, T. H. Protein transport from the late Golgi to the vacuole in the yeast Saccharomyces cerevisiae. Biochim. Biophys. Acta 1744, 438–454 (2005).

    Article  CAS  PubMed  Google Scholar 

  112. Barajas, D. & Nagy, P. D. Ubiquitination of tombusvirus p33 replication protein plays a role in virus replication and binding to the host Vps23p ESCRT protein. Virology 397, 358–368 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Pogany, J., Stork, J., Li, Z. & Nagy, P. D. In vitro assembly of the Tomato bushy stunt virus replicase requires the host Heat shock protein 70. Proc. Natl Acad. Sci. USA 105, 19956–19961 (2008). This work shows that the assembly and activity of the viral replicase is absolutely dependent on the recruited HSP70 function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Serva, S. & Nagy, P. D. Proteomics analysis of the tombusvirus replicase: Hsp70 molecular chaperone is associated with the replicase and enhances viral RNA replication. J. Virol. 80, 2162–2169 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Castorena, K. M., Weeks, S. A., Stapleford, K. A., Cadwallader, A. M. & Miller, D. J. A functional heat shock protein 90 chaperone is essential for efficient Flock House virus RNA polymerase synthesis in Drosophila cells. J. Virol. 81, 8412–8420 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kampmueller, K. M. & Miller, D. J. The cellular chaperone heat shock protein 90 facilitates Flock House virus RNA replication in Drosophila cells. J. Virol. 79, 6827–6837 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Weeks, S. A. et al. A targeted analysis of cellular chaperones reveals contrasting roles for heat shock protein 70 in flock house virus RNA replication. J. Virol. 84, 330–339 (2010).

    Article  CAS  PubMed  Google Scholar 

  118. Tomita, Y. et al. Mutation of host dnaJ homolog inhibits brome mosaic virus negative-strand RNA synthesis. J. Virol. 77, 2990–2997 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Yi, Z. et al. Identification and characterization of the host protein DNAJC14 as a broadly active flavivirus replication modulator. PLoS Pathog. 7, e1001255 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Okamoto, T. et al. Hepatitis C virus RNA replication is regulated by FKBP8 and Hsp90. EMBO J. 25, 5015–5025 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kaul, A. et al. Essential role of cyclophilin A for hepatitis C virus replication and virus production and possible link to polyprotein cleavage kinetics. PLoS Pathog. 5, e1000546 (2009). This study elucidates the functional role of the host CYPA in HCV replication.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Watashi, K. et al. Cyclophilin B is a functional regulator of hepatitis C virus RNA polymerase. Mol. Cell 19, 111–122 (2005).

    Article  CAS  PubMed  Google Scholar 

  123. Li, Z. et al. Translation elongation factor 1A facilitates the assembly of the tombusvirus replicase and stimulates minus-strand synthesis. PLoS Pathog. 6, e1001175 (2010). This mechanistic approach demonstrates the functional role of a host translation factor in (−)RNA synthesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Blackwell, J. L. & Brinton, M. A. Translation elongation factor-1 alpha interacts with the 3′ stem-loop region of West Nile virus genomic RNA. J. Virol. 71, 6433–6444 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Davis, W. G., Blackwell, J. L., Shi, P. Y. & Brinton, M. A. Interaction between the cellular protein eEF1A and the 3′-terminal stem-loop of West Nile virus genomic RNA facilitates viral minus-strand RNA synthesis. J. Virol. 81, 10172–10187 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Kidmose, R. T., Vasiliev, N. N., Chetverin, A. B., Andersen, G. R. & Knudsen, C. R. Structure of the Qβ replicase, an RNA-dependent RNA polymerase consisting of viral and host proteins. Proc. Natl Acad. Sci. USA 107, 10884–10889 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Takeshita, D. & Tomita, K. Assembly of Qβ viral RNA polymerase with host translational elongation factors EF-Tu and -Ts. Proc. Natl Acad. Sci. USA 107, 15733–15738 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Barton, D. J., O'Donnell, B. J. & Flanegan, J. B. 5′ cloverleaf in poliovirus RNA is a cis-acting replication element required for negative-strand synthesis. EMBO J. 20, 1439–1448 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Huang, P. & Lai, M. M. C. Heterogeneous nuclear ribonucleoprotein A1 binds to the 3′-untranslated region and mediates potential 5′-3′-end cross talks of mouse hepatitis virus RNA. J. Virol. 75, 5009–5017 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Brunner, J. E. et al. Functional interaction of heterogeneous nuclear ribonucleoprotein C with poliovirus RNA synthesis initiation complexes. J. Virol. 79, 3254–3266 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Emara, M. M. & Brinton, M. A. Interaction of TIA-1/TIAR with West Nile and dengue virus products in infected cells interferes with stress granule formation and processing body assembly. Proc. Natl Acad. Sci. USA 104, 9041–9046 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Sirover, M. A. New insights into an old protein: the functional diversity of mammalian glyceraldehyde-3-phosphate dehydrogenase. Biochim. Biophys. Acta 1432, 159–184 (1999).

    Article  CAS  PubMed  Google Scholar 

  133. Wang, R. Y. & Nagy, P. D. Tomato bushy stunt virus co-opts the RNA-binding function of a host metabolic enzyme for viral genomic RNA synthesis. Cell Host Microbe 3, 178–187 (2008).

    Article  CAS  PubMed  Google Scholar 

  134. Huang, T. S. & Nagy, P. D. Direct inhibition of tombusvirus plus-strand RNA synthesis by a dominant-negative mutant of a host metabolic enzyme, GAPDH, in yeast and plants. J. Virol. 85, 9090–9102 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Mnaimneh, S. et al. Exploration of essential gene functions via titratable promoter alleles. Cell 118, 31–44 (2004).

    Article  CAS  PubMed  Google Scholar 

  136. Ghaemmaghami, S. et al. Global analysis of protein expression in yeast. Nature 425, 737–741 (2003).

    Article  CAS  PubMed  Google Scholar 

  137. Zhu, H. et al. Global analysis of protein activities using proteome chips. Science 293, 2101–2105 (2001).

    Article  CAS  PubMed  Google Scholar 

  138. Tong, A. H. et al. Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294, 2364–2368 (2001).

    Article  CAS  PubMed  Google Scholar 

  139. Tong, A. H. et al. Global mapping of the yeast genetic interaction network. Science 303, 808–813 (2004).

    Article  CAS  PubMed  Google Scholar 

  140. Welsch, S. S. et al. Composition and three-dimensional architecture of the dengue virus replication and assembly sites. Cell Host Microbe 5, 365–375 (2009).

    CAS  Google Scholar 

  141. Aizaki, H., Choi, K. S., Liu, M., Li, Y. J. & Lai, M. M. Polypyrimidine-tract-binding protein is a component of the HCV RNA replication complex and necessary for RNA synthesis. J. Biomed. Sci. 13, 469–480 (2006).

    Article  CAS  PubMed  Google Scholar 

  142. Diez, J., Ishikawa, M., Kaido, M. & Ahlquist, P. Identification and characterization of a host protein required for efficient template selection in viral RNA replication. Proc. Natl Acad. Sci. USA 97, 3913–3918 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Scheller, N. et al. Translation and replication of hepatitis C virus genomic RNA depends on ancient cellular proteins that control mRNA fates. Proc. Natl Acad. Sci. USA 106, 13517–13522 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Choi, K. S., Mizutani, A. & Lai, M. M. SYNCRIP, a member of the heterogeneous nuclear ribonucleoprotein family, is involved in mouse hepatitis virus RNA synthesis. J. Virol. 78, 13153–13162 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Kim, C. S., Seol, S. K., Song, O. K., Park, J. H. & Jang, S. K. An RNA-binding protein, hnRNP A1, and a scaffold protein, septin 6, facilitate hepatitis C virus replication. J. Virol. 81, 3852–3865 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank D. Smith and members of the Nagy lab for discussion. The authors apologize to those colleagues whose research on the replication of (+)RNA viruses is not mentioned in this Review owing to space restrictions. This work was supported by the US National Institutes of Health, National Institute of Allergy and Infectious Diseases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter D. Nagy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Peter D. Nagy's homepage

Glossary

Peroxisomes

Organelles that are found in virtually all eukaryotic cells and are involved in the catabolism of fatty acids, damino acids and polyamines. Peroxisomes are important for energy metabolism.

Genome-wide approaches

Studies based on high-throughput screens that include a systematic analysis of all or most of the genes encoded by the genome of a particular host organism.

RNA interference

(RNAi). A pathway that, in most eukaryotes, controls which genes are active and their relative activities. The pathway is induced by small interfering RNAs (siRNAs), which are small double-stranded RNAs. Using a library of siRNAs, the expression of each gene in a given cell line or organism can artificially be knocked down.

Proteomic approaches

Global approaches that involve all or most of the proteins encoded by the genome of the particular host.

Yeast two-hybrid screens

Screens looking for proteinprotein or proteinnucleic acid interactions in Saccharomyces cerevisiae cells. The target protein is screened for physical interaction against a library of full-length or truncated genes that are expressed from a plasmid.

Protein microarray

A microarray based on purified (host) proteins fixed to the chip surface. These arrays are used to identify proteinprotein or proteinnucleic acid interactions, substrates of proteins or targets of biologically active small molecules.

Cap-independent translation

A method of translation used by several positive-sense RNA viruses, in which the usual requirement for the interaction of host translation initiation factors with the 5-cap (a special tag bound to the 5 end of an mRNA molecule) is circumvented, and select host initiation factors are recruited by alternative means to participate in translation.

SNARE-like protein

One of a large superfamily of proteins with a primary role in vesicle fusion.

Geranylgeranylated cellular protein

A protein that has been modified post-translationally by the attachment of one or two 20carbon lipophilic geranylgeranyl isoprene units (from geranylgeranyl diphosphate) to a cysteine at the carboxyterminus of the protein. Geranylgeranylation is proposed to function as a membrane anchor for proteins.

Actomyosin

A protein complex composed of actin and myosin.

Viral replication organelles

Large cellular structures that contain many individual viral replication complexes.

Trans-Golgi network

A complex network of membranes and associated vesicles in the so-called trans-face of the Golgi, which is involved in sorting and shipping proteins to their intended destinations in the cell.

ER exit sites

Selected areas within the endoplasmic reticulum (ER) from which transport vesicles carrying newly synthesized proteins and lipids bud off for transport to the Golgi apparatus.

ERGIC

(Endoplasmic reticulumGolgi intermediate compartment). An organelle in eukaryotic cells that mediates trafficking between the ER and the Golgi, facilitating the sorting of cargo.

Autophagy

A tightly regulated catabolic process involving the degradation of cellular components through the lysosomal machinery.

Stress granule

A type of dense proteinRNA aggregation in the cytosol, not surrounded by membrane, that appears when the cell is under stress. Stress granules may store and protect RNAs from harmful conditions under stress, and they serve as decision points for untranslated mRNAs for further storage, degradation or translation re-initiation.

P-bodies

(Processing bodies). Distinct foci within the cytoplasm, consisting of enzymes involved in mRNA turnover.>

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagy, P., Pogany, J. The dependence of viral RNA replication on co-opted host factors. Nat Rev Microbiol 10, 137–149 (2012). https://doi.org/10.1038/nrmicro2692

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2692

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology