Abstract
Global-mean sea-level rise (GMSLR) during the twentieth century was primarily caused by glacier and ice-sheet mass loss, thermal expansion of ocean water and changes in terrestrial water storage1. Whether based on observations2 or results of climate models3,4, however, the sum of estimates of each of these contributions tends to fall short of the observed GMSLR. Current estimates of the glacier contribution to GMSLR rely on the analysis of glacier inventory data, which are known to undersample the smallest glacier size classes5,6. Here we show that from 1901 to 2015, missing and disappeared glaciers produced a sea-level equivalent (SLE) of approximately 16.7 to 48.0 millimetres. Missing glaciers are those small glaciers that we expect to exist today, owing to regional analyses and theoretical scaling relationships, but that are not represented in the inventories. These glaciers contributed approximately 12.3 to 42.7 millimetres to the historical SLE. Additionally, disappeared glaciers (those that existed in 1901 but had melted away by 2015, and that therefore cannot be included in modern global glacier inventories) made an estimated contribution of between 4.4 and 5.3 millimetres. Failure to consider these uncharted glaciers may be an important cause of difficulties in closing the GMSLR budget during the twentieth century: their contribution is on average between 0.17 and 0.53 millimetres of SLE per year, compared to a budget discrepancy of about 0.5 millimetres of GMSLR per year between 1901 and 1990. Although the uncharted glaciers will have a minimal role in sea-level rise in the future, and are less important after 1990, these findings imply that undiscovered physical processes are not required to close the historical sea-level budget.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
27,99 ⬠/ 30 days
cancel any time
Subscribe to this journal
Receive 51 print issues and online access
199,00 ⬠per year
only 3,90 ⬠per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
39,95 â¬
Prices may be subject to local taxes which are calculated during checkout


Similar content being viewed by others
Data availability
The RGIv5 dataset used for glacier area distribution data are available from GLIMS at https://www.glims.org/RGI/randolph50.html with identifier doi:10.7265/N5-RGI-50. The updated glacier model output is available from the corresponding author upon reasonable request. The SGI is described in ref. 22 with identifier doi:10.1657/1938-4246-46.4.933, and data was available from the authors on reasonable request. The data generated for this paper is not provided owing to the difficulty of representing a collection of matrices indexed by glacier size class and year in a simple CSV file in a way that is easily readable, but the data is available from the corresponding author on reasonable request.
References
Church, J. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. et al.) Ch. 13 (IPCC, Cambridge Univ. Press, Cambridge/New York, 2013).
Gregory, J. M. et al. Twentieth-century global-mean sea-level rise: is the whole greater than the sum of the parts? J. Clim. 26, 4476â4499 (2013).
Church, J. A., Monselesan, D., Gregory, J. M. & Marzeion, B. Evaluating the ability of process based models to project sea-level change. Environ. Res. Lett. 8, 014051 (2013).
Slangen, A. et al. Anthropogenic forcing dominates global mean sea-level rise since 1970. Nat. Clim. Change 6, 701â705 (2016).
Bahr, D. & Radic, V. Significant contribution to total mass from very small glaciers. Cryosphere 6, 763â770 (2012).
Pfeffer, W. T. et al. The Randolph Glacier Inventory: a globally complete inventory of glaciers. J. Glaciol. 60, 537â552 (2014).
Zemp, M. et al. Historically unprecedented global glacier decline in the early 21st century. J. Glaciol. 61, 745â762 (2015).
Cogley, J. G. Geodetic and direct mass-balance measurements: comparison and joint analysis. Ann. Glaciol. 50, 96â100 (2009).
Oerlemans, J., Dyurgerov, M. & van de Wal, R. S. W. Reconstructing the glacier contribution to sea-level rise back to 1850. Cryosphere 1, 59â65 (2007).
Leclercq, P. W., Oerlemans, J. & Cogley, J. G. Estimating the glacier contribution to sea-level rise for the period 1800â2005. Surv. Geophys. 32, 519â535 (2011).
Marzeion, B., Jarosch, A. H. & Hofer, M. Past and future sea-level change from the surface mass balance of glaciers. Cryosphere 6, 1295â1322 (2012).
WGMS (World Glacier Monitoring Service) and National Snow and Ice Data Center (NSIDC). World Glacier Inventory http://nsidc.org/data/glacier inventory/index.html (WGMS and NSIDC, 1989).
Bahr, D. B. & Meier, M. F. Snow patch and glacier size distributions. Water Resour. Res. 36, 495â501 (2000).
Rastner, P. et al. The first complete inventory of the local glaciers and ice caps on Greenland. Cryosphere 6, 1483â1495 (2012).
Paul, F. et al. The glaciers climate change initiative: methods for creating glacier area, elevation change and velocity products. Remote Sens. Environ. 162, 408â426 (2015).
Arendt, A. et al. Randolph Glacier Inventoryâa Dataset of Global Glacier Outlines: Version 5.0 https://www.glims.org/RGI/randolph50.html (Global Land Ice Measurements from Space, Boulder, 2015).
Frederikse, T. et al. Closing the sea level budget on a regional scale: trends and variability on the Northwestern European continental shelf. Geophys. Res. Lett. 43, 10864â10872 (2016).
Marcos, M. et al. Internal variability versus anthropogenic forcing on sea level and its components. Surv. Geophys. 38, 329â348 (2017).
Harris, I., Jones, P., Osborn, T. & Lister, D. Updated high-resolution grids of monthly climatic observationsâthe CRU TS3.10 dataset. Int. J. Climatol. 34, 623â642 (2014).
Hay, C. C., Morrow, E., Kopp, R. E. & Mitrovica, J. X. Probabilistic reanalysis of twentieth-century sea-level rise. Nature 517, 481â484 (2015).
Dangendorf, S. et al. Reassessment of 20th century global mean sea level rise. Proc. Natl Acad. Sci. USA 114, 5946â5951 (2017).
Fischer, M., Huss, M., Barboux, C. & Hoelzle, M. The new Swiss Glacier Inventory SGI2010: relevance of using high-resolution source data in areas dominated by very small glaciers. Arct. Antarct. Alp. Res. 46, 933â945 (2014).
Bahr, D., Meier, M. & Peckham, S. The physical basis of glacier volume-area scaling. J. Geophys. Res. 102, 20355â20362 (1997).
Bahr, D. Global distributions of glacier properties: a stochastic scaling paradigm. Water Resour. Res. 33, 1669â1679 (1997).
Fischer, M., Huss, M. & Hoelzle, M. Surface elevation and mass changes of all Swiss glaciers 1980â2010. Cryosphere 9, 525â540 (2015).
Acknowledgements
This research is funded by the Austrian Science Fund (FWF) project P25362.
Reviewer information
Nature thanks W. Pfeffer and the other anonymous reviewer(s) for their contribution to the peer review of this work.
Author information
Authors and Affiliations
Contributions
D.P. and B.M conceived and designed the study. B.M. performed the glacier model experiments. D.P. then developed and applied the upscaling techniques and performed the analysis. D.P. wrote the manuscript with contributions by B.M.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisherâs note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data figures and tables
Extended Data Fig. 1 RGIv5 glacier change statistics by size class.
a, Mean specific glacier mass balance by glacier size class. The fact that this graph is relatively flat suggests that the differing mass balance between small glaciers and larger glaciers is not a driver for small glaciers (and by extension missing glaciers) contributing a large amount to SLE mass loss relative to their current ice mass. Glacier size does not strongly affect mean specific mass balance, and this weak dependence is also shown in observations from the literature25. b, Mean proportion of 1901 mass lost between 1901 and 2015 as a function of glacier size class. The smallest glaciers that exist in 2015 typically lost almost all of their 1901 mass, with the proportion dropping consistently as 2015 glacier size increases, up to the largest glaciers in 2015, which have seen an average of less than 10% of their mass disappear since 1901.
Extended Data Fig. 2 Glacier distribution for Switzerland.
We believe that in Switzerland, the RGIv5 (solid red) has a much better representation of small glaciers. The Swiss Glacier Inventory22 (SGI) (solid black), which is based on high-resolution orthophotographs, and which is therefore believed to have better representation of small glaciers than is available globally, shows good agreement with the RGI. The power laws for the RGI and SGI (dashed red and dashed black respectively) are calculated for the 10â2 to 100 km2 range, and show that a credible power law exists in this region down to the smallest glacier sizes, albeit with reduced exponents (1.26 and 1.16 respectively).
Rights and permissions
About this article
Cite this article
Parkes, D., Marzeion, B. Twentieth-century contribution to sea-level rise from uncharted glaciers. Nature 563, 551â554 (2018). https://doi.org/10.1038/s41586-018-0687-9
Received:
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41586-018-0687-9
Keywords
This article is cited by
-
Data-driven reconstruction reveals large-scale ocean circulation control on coastal sea level
Nature Climate Change (2021)
-
Accelerated global glacier mass loss in the early twenty-first century
Nature (2021)
-
Secular polar motion observed by GRACE
Journal of Geodesy (2021)
-
The causes of sea-level rise since 1900
Nature (2020)
-
Mrakia fibulata sp. nov., a psychrotolerant yeast from temperate and cold habitats
Antonie van Leeuwenhoek (2020)



Dheeraj Verma
Sea-level rise is one of the most significant effects of climate change. High projected rates of future sea-level rise have captured the attention of the world. Particularly, countries which are located in low-lying areas as well as small islands are concerned that their land areas would be decreased due to inundation and coastal erosion and, at worst, a large proportion of their population may be forced to migrate to other countries. Therefore, this issue has resulted in heightened attention internationally, as the effects of climate change become apparent.http://www.fileyogi.com
Robert
The effect of seismic activity is the one I would like to know. A decent size tremor in the Antarctic and the fact that so many of these large glaciers are now just free hanging into the ocean. A estimate was given on Guy McPherson (naturebatslast) site that a 0.5 meter rise could occur from such an event.
Flooding of low lying areas, but significantly underground transport in populated areas, such as Singapore. Also the destruction of the economy as high value beach-side suburbs crash in value and Banks carry enormous loss on there property values.
There are properties in Adelaide that get there underground car parks flooded every high king tide associated with a storm. Economic loss is limited to sale / resale and direct storm damage. I am sure this scenario is repeated and the models on economic impact will have trouble modelling population trends if panic sets in.
As for the death due to habitat loss that is possibly unavoidable. But an economic meltdown in a changing climate model is a bit like lights out during a high rise fire. The confusion on behalf of governments would hamper a organised response. My opinion.