Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Arctic Ocean bathymetry and its connections to tectonics, oceanography and climate

Abstract

For at least the past 50 million years, the Arctic region has had a major role in regulating global climate regimes and their variations through time. In this Review, we discuss the role of the Arctic oceanic basin and its complex bathymetry in controlling ocean circulation and marine cryosphere development. The spatial distribution and depth of various seafloor features, such as ocean gateways, submarine plateaus and continental shelves, influence the pathways of ocean currents, both today and in the past. The Arctic Ocean was an enclosed basin until the Early Eocene (56–48 million years ago), when the Eurasian Basin started to form and a shallow sea connected the Arctic to the Tethys Ocean. The connections with the North Atlantic and the global ocean through shallow and deep gateways prompted the transition from a global greenhouse to icehouse climate. However, the Arctic Ocean remains underexplored, as less than one-quarter of its seafloor is mapped in detail. Future integrated geoscience research, modern bathymetric mapping technology and active international programmes are needed to close these data gaps.

Key points

  • Bathymetry controls ocean current pathways, especially along steep slopes, and influences ocean mixing, ventilation, and the horizontal and vertical distribution of temperature and salinity.

  • In the Cretaceous period, when the first Arctic abyssal plain was forming 126 million years ago (Ma), the Arctic Ocean was confined between large land masses and their wide continental shelves.

  • From 56 Ma, tectonic changes and mantle dynamics facilitated the opening of shallow and deep seaways within Eurasia and at its continental margins, initiating water exchange with the Tethys, North Atlantic and global oceans.

  • A temporary deepening of the Barents Seaway in the Eocene at 50 Ma reduced the strength of the proto-Atlantic Meridional Overturning Circulation via freshwater fluxes from the Arctic, which suppressed dense-water formation at the northern limb of the overturning circulation.

  • Bathymetric changes of the proto-Fram Strait, Barents Seaway and the Greenland–Iceland–Scotland Ridge together with decreasing atmospheric carbon dioxide probably influenced the climate transition from greenhouse to icehouse conditions at the Eocene–Oligocene Transition (34 Ma).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Circum-Arctic topography, bathymetry and key geological events.
Fig. 2: Present-day ocean circulation and cryosphere influenced by Arctic bathymetry.
Fig. 3: Geophysical characterization of the Arctic Ocean basin.
Fig. 4: Detailed submarine structures and processes in difficult-to-access Arctic regions.
Fig. 5: Seafloor depth, basement roughness and geodynamic processes along the Gakkel Ridge.
Fig. 6: Reconstructed palaeobathymetry of Arctic and North Atlantic oceans over the Cenozoic.

Similar content being viewed by others

References

  1. Timmermans, M. L. & Marshall, J. Understanding Arctic Ocean circulation: a review of ocean dynamics in a changing climate. J. Geophys. Res. Oceans https://doi.org/10.1029/2018JC014378 (2020).

  2. Carmack, E. et al. The new Arctic: towards quantifying the increasing role of oceanic heat in sea ice loss. Bull. Am. Meteorol. Soc. https://doi.org/10.1175/BAMS-D-13-00177.1 (2015).

  3. Woodgate, R. A. & Peralta-Ferriz, C. Warming and freshening of the Pacific inflow to the Arctic from 1990–2019 implying dramatic shoaling in Pacific winter water ventilation of the Arctic water column. Geophys. Res. Lett. https://doi.org/10.1029/2021GL092528 (2021).

  4. Jakobsson, M. & Mayer, L. A. Polar region bathymetry: critical knowledge for the prediction of global sea level rise. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.788724 (2022).

  5. IPCC. Climate Change 2023: Synthesis Report (eds Core Writing Team, Lee, H. & Romero, J.) 35–115 (IPCC, 2023).

  6. Jahn, A., Holland, M. M. & Kay, J. E. Projections of an ice-free Arctic Ocean. Nat. Rev. Earth Environ. 5, 164–176 (2024).

    Article  Google Scholar 

  7. Kim, Y.-H., Min, S.-K., Gillett, N. P., Notz, D. & Malinina, E. Observationally-constrained projections of an ice-free Arctic even under a low emission scenario. Nat. Commun. 14, 3139 (2023).

    Article  CAS  Google Scholar 

  8. Manabe, S. & Stouffer, R. J. Sensitivity of a global climate model to an increase of CO2 concentration in the atmosphere. J. Geophys. Res. 85, 529–5554 (1980).

    Google Scholar 

  9. Straume, E. O., Nummelin, A., Gaina, C. & Nisancioglu, K. H. Climate transition at the Eocene-Oligocene influenced by bathymetric changes to the Atlantic-Arctic oceanic gateways. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2115346119 (2022).

  10. UN Convention on Law of the Sea. Vol. 1833 UN Treaty Ser. 397, IV, Art. 76 (1982).

  11. Mayer, L. A. et al. The Nippon foundation — GEBCO seabed 2030 project: the quest to see the world’s oceans completely mapped by 2030. Geosciences 8, 63 (2018).

    Article  Google Scholar 

  12. Dossing, A., Gaina, C., Jackson, H. R. & Andersen, O. B. Cretaceous ocean formation in the High Arctic. Earth Planet. Sci. Lett. https://doi.org/10.1016/j.epsl.2020.116552 (2020).

  13. Herrle, J. O. et al. Mid-Cretaceous high Arctic stratigraphy, climate, and oceanic anoxic events. Geology 43, 403–406 (2015).

    Article  CAS  Google Scholar 

  14. Jakobsson, M. et al. Ryder Glacier in northwest Greenland is shielded from warm Atlantic water by a bathymetric sill. Commun. Earth Environ. https://doi.org/10.1038/s43247-020-00043-0 (2020).

  15. Schaffer, J. et al. Bathymetry constrains ocean heat supply to Greenland’s largest glacier tongue. Nat. Geosci. 13, 227 (2020).

    Article  CAS  Google Scholar 

  16. Jakobsson, M. et al. The Holocene retreat dynamics and stability of Petermann Glacier in northwest greenland. Nat. Commun. 9, 2104 (2018).

    Article  Google Scholar 

  17. Jakobsson, M. et al. The International Bathymetric Chart of the Arctic Ocean Version 5.0. Sci. Data 11, 1420 (2024).

    Article  Google Scholar 

  18. Drachev, S. S., Brekke, H., Henriksen, E. & Moore, T. Sedimentary successions of the Arctic region and their hydrocarbon prospectivity. Geol. Soc. Lond. Mem. 57, M57 (2024).

    Article  Google Scholar 

  19. Jakobsson, M., Grantz, A., Kristoffersen, Y. & Macnab, R. Physiographic provinces of the Arctic Ocean seafloor. Geol. Soc. Am. Bull. 115, 1443–1455 (2003).

    Article  Google Scholar 

  20. Straume, E. O. et al. GlobSed: updated total sediment thickness in the World’s Oceans. Geochem. Geophys. Geosyst. 20, 1756–1772 (2019).

    Article  Google Scholar 

  21. Nikishin, A. M. et al. Arctic Ocean mega project: Paper 2 — Arctic stratigraphy and regional tectonic structure. Earth Sci. Rev. 217, https://doi.org/10.1016/j.earscirev.2021.103581 (2021).

  22. Lebedeva-Ivanova, N., Gaina, C., Minakov, A. & Kashubin, S. ArcCRUST: Arctic crustal thickness from 3-D gravity inversion. Geochem. Geophys. Geosyst. 20, 3225–3247 (2019).

    Article  Google Scholar 

  23. Gaina, C. & Whittaker, J. in Encyclopedia of Solid Earth Geophysics (ed. Gupta, H. K.) 1120–1124 (Springer, 2021).

  24. Minakov, A., Faleide, J. I., Glebovsky, V. Y. & Mjelde, R. Structure and evolution of the northern Barents–Kara Sea continental margin from integrated analysis of potential fields, bathymetry and sparse seismic data. Geophys. J. Int. 188, 79–102 (2012).

    Article  Google Scholar 

  25. Jokat, W. The sedimentary structure of the Lomonosov Ridge between 88°N and 80°N. Geophys. J. Int. 163, 698–726 (2005).

    Article  Google Scholar 

  26. Kristoffersen, Y., Nilsen, E. H. & Hall, J. K. The High Arctic Large Igneous Province: first seismic-stratigraphic evidence for multiple Mesozoic volcanic pulses on the Lomonosov Ridge, central Arctic Ocean. J. Geol. Soc. Lond. https://doi.org/10.1144/jgs2022-153 (2023).

  27. Boggild, K. et al. in Subaqueous Mass Movements and their Consequences: Advances in Process Understanding, Monitoring and Hazard Assessments (eds Georgiopoulou, A. et al.) 323–340 (Geological Society, 2020).

  28. Argus, D. F. & Gordon, R. G. No-net-rotation model of current plate velocities incorporating plate motion model NUVEL-1. Geophys. Res. Lett. 18, 2039–2042 (1991).

    Article  Google Scholar 

  29. Nikishin, A. M., Gaina, C., Petrov, E. I., Malyshev, N. A. & Freiman, S. I. Eurasia Basin and Gakkel Ridge, Arctic Ocean: crustal asymmetry, ultra-slow spreading and continental rifting revealed by new seismic data. Tectonophysics 746, 64–82 (2018).

    Article  Google Scholar 

  30. Heezen, B. C. & Ewing, M. in Geology of the Arctic (ed. Raaschm, G.) 622–642 (Univ. Toronto Press, 1961).

  31. Edwards, M. H. & Coakley, B. J. SCICEX investigations of the Arctic Ocean system. Chem. Erde-Geochem 63, 281–328 (2003).

    Article  CAS  Google Scholar 

  32. Michael, P. J. et al. Magmatic and amagmatic seafloor generation at the ultraslow-spreading Gakkel Ridge, Arctic Ocean. Nature 423, 956–961 (2003).

    Article  CAS  Google Scholar 

  33. Sohn, R. A. et al. Explosive volcanism on the ultraslow-spreading Gakkel Ridge, Arctic Ocean. Nature 453, 1236–1238 (2008).

    Article  CAS  Google Scholar 

  34. German, C. R. et al. Volcanically hosted venting with indications of ultramafic influence at Aurora hydrothermal field on Gakkel Ridge. Nat. Commun. 13, 6517 (2022).

    Article  CAS  Google Scholar 

  35. Ramirez-Llodra, E. et al. Hot vents beneath an icy ocean: the Aurora Vent Field, Gakkel Ridge, revealed. Oceanography 36, 6–17 (2023).

    Article  Google Scholar 

  36. Ding, W. et al. Submarine wide-angle seismic experiments in the High Arctic: the JASMInE Expedition in the slowest spreading Gakkel Ridge. Geosyst. Geoenviron. https://doi.org/10.1016/j.geogeo.2022.100076 (2022).

  37. Schlindwein, V., Demuth, A., Korger, E., Läderach, C. & Schmid, F. Seismicity of the Arctic Mid-Ocean Ridge system. Polar Sci. 9, 146–157 (2015).

    Article  Google Scholar 

  38. Zhang, T. et al. Highly variable magmatic accretion at the ultraslow-spreading Gakkel Ridge. Nature 633, 109–113 (2024).

    Article  CAS  Google Scholar 

  39. O’Connor, J. M. et al. Thermochemical anomalies in the upper mantle control Gakkel Ridge accretion. Nat Commun 12, 6962 (2021).

    Article  Google Scholar 

  40. Edmonds, H. N. et al. Discovery of abundant hydrothermal venting on the ultraslow-spreading Gakkel Ridge in the Arctic Ocean. Nature 421, 252–256 (2003).

    Article  CAS  Google Scholar 

  41. Gille, S. T., Metzger, E. J. & Tokmakian, R. Seafloor topography and ocean circulation. Oceanography 17, 47–54 (2004).

    Article  Google Scholar 

  42. Jayne, S., Laurent, L. C. S. & Gille, S. T. Connections between ocean bottom topography and Earth’s climate. Oceanography 17, 65–74 (2004).

    Article  Google Scholar 

  43. Buckley, M. W. & Marshall, J. Observations, inferences, and mechanisms of the Atlantic Meridional Overturning Circulation: a review. Rev. Geophys. 54, 5–63 (2016).

    Article  Google Scholar 

  44. Ferreira, D., Marshall, J. & Campin, J. M. Localization of deep water formation: role of atmospheric moisture transport and geometrical constraints on ocean circulation. J. Clim. 23, 1456–1476 (2010).

    Article  Google Scholar 

  45. Hossain, A., Knorr, G., Jokat, W. & Lohmann, G. Opening of the Fram Strait led to the establishment of a modern-like three-layer stratification in the Arctic Ocean during the Miocene. arktos 7, 1–12 (2021).

    Article  Google Scholar 

  46. Timmermans, M. L., Marshall, J., Proshutinsky, A. & Scott, J. Seasonally derived components of the Canada Basin halocline. Geophys. Res. Lett. 44, 5008–5015 (2017).

    Article  Google Scholar 

  47. Broecker, W. S. et al. How much deep water is formed in the Southern Ocean. J. Geophys. Res. Ocean. 103, 15833–15843 (1998).

    Article  CAS  Google Scholar 

  48. Fer, I., Müller, M. & Peterson, A. K. Tidal forcing, energetics, and mixing near the Yermak Plateau. Ocean. Sci. 11, 287–304 (2015).

    Article  Google Scholar 

  49. Carpenter, J. R. & Timmermans, M. L. Deep mesoscale eddies in the Canada Basin, Arctic Ocean. Geophys. Res. Lett. https://doi.org/10.1029/2012gl053025 (2012).

  50. Zhang, K., Song, H., Coakley, B., Yang, S. & Fan, W. Investigating eddies from coincident seismic and hydrographic measurements in the Chukchi borderlands, the Western Arctic Ocean. J. Geophys. Research: Ocean. 127, e2022JC018453 (2022).

    Article  Google Scholar 

  51. Björk, G. & Winsor, P. The deep waters of the Eurasian Basin, Arctic Ocean: geothermal heat flow, mixing and renewal. Deep-Sea Res. I 53, 1253–1271 (2006).

    Article  Google Scholar 

  52. Timmermans, M. L. & Garrett, C. Evolution of the deep water in the Canadian Basin in the Arctic Ocean. J. Phys. Oceanogr. 36, 866–874 (2006).

    Article  Google Scholar 

  53. Björk, G. et al. Bathymetry and oceanic flow structure at two deep passages crossing the Lomonosov Ridge. Ocean. Sci. 14, 1–13 (2018).

    Article  Google Scholar 

  54. Aagaard, K., Coachman, L. K. & Carmack, E. On the halocline of the Arctic Ocean. Deep Sea Res. A 28, 529–545 (1981).

    Article  Google Scholar 

  55. Farmer, J. R. et al. Arctic Ocean stratification set by sea level and freshwater inputs since the last ice age. Nat. Geosci. 14, 684–689 (2021).

    Article  CAS  Google Scholar 

  56. Bentley, M. J. et al. Direct measurement of warm Atlantic Intermediate Water close to the grounding line of Nioghalvfjerdsfjorden (79°N) Glacier, northeast Greenland. Cryosphere 17, 1821–1837 (2023).

    Article  Google Scholar 

  57. Smelror, M., Petrov, O., Larssen, G. B. & Werner, S. C. Geological History of the Barents Sea: Atlas. 135 (Geological Survey of Norway, 2009).

  58. Embry, A., Dixon, J., Ricketts, B. & Stephenson, R. Canadian Arctic–Beaufort Sea rifted margin tectono-sedimentary element, SE Canada Basin. Geol. Soc. Lond. Mem. https://doi.org/10.1144/M57-2022-54 (2025).

  59. Toro, J., Miller, E. L., Prokopiev, A. V., Zhang, X. & Veselovskiy, R. Mesozoic orogens of the Arctic from Novaya Zemlya to Alaska. J. Geol. Soc. Lond. 173, 989–1006 (2016).

    Article  Google Scholar 

  60. Piepjohn, K., von Gosen, W. & Tessensohn, F. The Eurekan deformation in the Arctic: an outline. J. Geol. Soc. Lond. 173, 1007–1024 (2016).

    Article  Google Scholar 

  61. Coakley, B., Brumley, K., Lebedeva-Ivanova, N. & Mosher, D. Exploring the geology of the central Arctic Ocean; understanding the basin features in place and time. J. Geol. Soc. Lond. 173, 967–987 (2016).

    Article  CAS  Google Scholar 

  62. Carey, S. W. in Papers and Proceedings of the Royal Society of Tasmania 89, 255–288 (Royal Society of Tasmania, 1955).

  63. Andersen, O. B. & Knudsen, P. in Fiducial Reference Measurements for Altimetry (eds Mertikas, S. P. & Pail, R.) 83–87 (Springer, 2020).

  64. Gibson, T. M. et al. A detrital zircon test of large-scale terrane displacement along the Arctic margin of North America. Geology 49, 545–550 (2021).

    Article  CAS  Google Scholar 

  65. Mukasa, S. B., Andronikov, A., Brumley, K., Mayer, L. A. & Armstrong, A. Basalts from the Chukchi borderland: 40Ar/39Ar ages and geochemistry of submarine intraplate lavas dredged from the Western Arctic Ocean. J. Geophys. Res. Solid Earth 125, e2019JB017604 (2020).

    Article  CAS  Google Scholar 

  66. Jackson, H. R. & Chian, D. The Alpha-Mendeleev ridge, a large igneous province with continental affinities. Gff 141, 316–329 (2019).

    Article  CAS  Google Scholar 

  67. Dossing, A., Gaina, C. & Brozena, J. M. Building and breaking a large igneous province: an example from the High Arctic. Geophys. Res. Lett. 44, 6011–6019 (2017).

    Article  Google Scholar 

  68. Evangelatos, J., Funck, T. & Mosher, D. C. The sedimentary and crustal velocity structure of Makarov Basin and adjacent Alpha Ridge. Tectonophysics 696, 99–114 (2017).

    Article  Google Scholar 

  69. Seton, M. et al. Global continental and ocean basin reconstructions since 200 Ma. Earth-Sci Rev. 113, 212–270 (2012).

    Article  Google Scholar 

  70. Weigelt, E. & Jokat, W. Peculiarities of roughness and thickness of oceanic crust in the Eurasian Basin, Arctic Ocean. Geophys. J. Int. 145, 505–516 (2001).

    Article  Google Scholar 

  71. Backman, J. & Moran, K. Expanding the Cenozoic paleoceanographic record in the Central Arctic Ocean: IODP Expedition 302 Synthesis. Cent. Eur. J. Geosci. 1, 157–175 (2009).

    Google Scholar 

  72. Gaina, C., Nikishin, A. M. & Petrov, E. I. Ultraslow spreading, ridge relocation and compressional events in the East Arctic region: a link to the Eurekan orogeny? Arktos 1, 16 (2015).

    Article  Google Scholar 

  73. Døssing, A., Hansen, T. M., Olesen, A. V., Hopper, J. R. & Funck, T. Gravity inversion predicts the nature of the Amundsen Basin and its continental borderlands near Greenland. Earth Planet. Sci. Lett. 408, 132–145 (2014).

    Article  Google Scholar 

  74. Kristoffersen, Y., Ohta, Y. & Hall, J. K. On the the origin of the Yermak Plateau north of Svalbard, Arctic Ocean. Norw. J. Geol. https://doi.org/10.1785/njg100-1-5 (2020).

  75. Jokat, W., Geissler, W. & Voss, M. Basement structure of the north-western Yermak Plateau. Geophys. Res. Lett. https://doi.org/10.1029/2007GL032892 (2008).

  76. Kristoffersen, Y., Hall, J. K. & Nilsen, E. H. Morris Jesup Spur and Rise north of Greenland — exploring present seabed features, the history of sediment deposition, volcanism and tectonic deformation at a Late Cretaceous/early Cenozoic triple junction in the Arctic Ocean. Norw. J. Geol. https://doi.org/10.1785/njg101-1-4 (2021).

  77. Glebovsky, V. Y. et al. Formation of the Eurasia Basin in the Arctic Ocean as inferred from geohistorical analysis of the anomalous magnetic field. Geotectonics 40, 263–281 (2006).

    Article  Google Scholar 

  78. Jokat, W., Lehmann, P., Damaske, D. & Bradley Nelson, J. Magnetic signature of North-East Greenland, the Morris Jesup Rise, the Yermak Plateau, the central Fram Strait: constraints for the rift/drift history between Greenland and Svalbard since the Eocene. Tectonophysics 691, 98–109 (2016).

    Article  Google Scholar 

  79. Dumais, M.-A., Gernigon, L., Olesen, O., Johansen, S. E. & Brönner, M. New interpretation of the spreading evolution of the Knipovich Ridge derived from aeromagnetic data. Geophys. J. Int. 224, 1422–1428 (2020).

    Article  Google Scholar 

  80. Hoggard, M., Austermann, J., Randel, C. & Stephenson, S. in Mantle Convection and Surface Expressions (eds Marquardt, H. et al.) 371–411 (Wiley, 2021).

  81. Lu, C., Grand, S. P., Lai, H. Y. & Garnero, E. J. TX2019slab: a new P and S tomography model incorporating subducting slabs. J. Geophys. Res. Solid Earth 124, 11549–11567 (2019).

    Article  Google Scholar 

  82. Jackson, M. G., Konter, J. G. & Becker, T. W. Primordial helium entrained by the hottest mantle plumes. Nature 542, 340 (2017).

    Article  CAS  Google Scholar 

  83. Straume, E. O., Gaina, C., Medvedev, S. & Nisancioglu, K. H. Global Cenozoic paleobathymetry with a focus on the Northern Hemisphere oceanic gateways. Gondwana Res. 86, 126–143 (2020).

    Article  Google Scholar 

  84. Percival, L. M. E. et al. Cretaceous Large Igneous Provinces: from volcanic formation to environmental catastrophes and biological crises. Geol. Soc. Lond. Spec. Publ. https://doi.org/10.1144/SP544-2023-88 (2024).

  85. Jenkyns, H. C. Geochemistry of oceanic anoxic events. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2009GC002788 (2010).

  86. Schröder-Adams, C. J., Herrle, J. O., Selby, D., Quesnel, A. & Froude, G. Influence of the high Arctic igneous province on the Cenomanian/Turonian boundary interval, Sverdrup Basin, high Canadian Arctic. Earth Planet. Sci. Lett. 511, 76–88 (2019).

    Article  Google Scholar 

  87. Galloway, J. M. et al. A mercury and trace element geochemical record across Oceanic Anoxic Event 1b in Arctic Canada. Palaeogeogr. Palaeoclimatol. Palaeoecol. 617, 111490 (2023).

    Article  Google Scholar 

  88. Grasby, S. E. et al. Oceanic Anoxic Event 3 in Arctic Canada — arc volcanism and ocean fertilization drove anoxia. Geol. Soc. Am. Bull. https://doi.org/10.1130/b37632.1 (2024).

  89. Clark, D. L., Whitman, R. R., Morgan, K. A. & Mackey, S. D. Stratigraphy and glacial-marine sediments of the Amerasian Basin, central Arctic Ocean. Spec. Pap. Geol. Soc. Am. 181, 1–57 (1980).

    Google Scholar 

  90. Mudie, P. J. & Blasco, S. M. in Initial Geological Report on CESAR — the Canadian Expedition to Study the Alpha Ridge, Arctic Ocean (eds Jackson, H. R. et al.) 55–99 (Geological Survey of Canada, 1985).

  91. Jenkyns, H. C., Forster, A., Schouten, S. & Sinninghe Damsté, J. S. High temperatures in the Late Cretaceous Arctic Ocean. Nature 432, 888–892 (2004).

    Article  CAS  Google Scholar 

  92. Niezgodzki, I., Tyszka, J., Knorr, G. & Lohmann, G. Was the Arctic Ocean ice free during the latest Cretaceous? The role of CO2 and gateway configurations. Glob. Planet. Change 177, 201–212 (2019).

    Article  Google Scholar 

  93. Boyd, D. W. & Lillegraven, J. A. Persistence of the Western Interior Seaway: historical background and significance of ichnogenus Rhizocorallium in Paleocene strata, south-central Wyoming. Rocky Mt. Geol. 46, 43–69 (2011).

    Article  Google Scholar 

  94. Akhmetiev, M. A. et al. The Paleogene history of the Western Siberian seaway — a connection of the peri-Tethys to the Arctic Ocean. Austrian J. Earth Sci. 105, 50–67 (2012).

    Google Scholar 

  95. Lasabuda, A. P. E. et al. Paleobathymetric reconstructions of the SW Barents Seaway and their implications for Atlantic–Arctic Ocean circulation. Commun. Earth Environ. https://doi.org/10.1038/s43247-023-00899-y (2023).

  96. Gaina, C., Nasuti, A., Kimbell, G. S. & Blischke, A. Break-up and seafloor spreading domains in the NE Atlantic. Geol. Soc. Lond. Spec. Publ. 447, 393–417 (2017).

    Article  Google Scholar 

  97. Barrier, E., Vrielynck, B., Brouillet, J.-F. & Brunet, M.-F. Paleotectonic reconstruction of the central Tethyan realm. Tectonono-Sedimentary-Palinspastic Maps from Late Permian to Pliocene (CCGM/CGMW, 2018).

  98. Blakey, R. Paleotectonic and paleogeographic history of the Arctic region. Atl. Geosci. 57, 7–39 (2021).

    Google Scholar 

  99. Barke, J. et al. Orbitally forced Azolla blooms and Middle Eocene Arctic hydrology: clues from palynology. Geology 39, 427–430 (2011).

    Article  Google Scholar 

  100. Palcu, D. V. & Krijgsman, W. The dire straits of Paratethys: gateways to the anoxic giant of Eurasia. Geol. Soc. Lond. Spec. Publ. https://doi.org/10.1144/SP523-2021-73 (2022).

  101. Kaya, M. Y. et al. Paleogene evolution and demise of the proto-Paratethys Sea in Central Asia (Tarim and Tajik basins): role of intensified tectonic activity at ca. 41 Ma. Basin Res. 31, 461–486 (2019).

    Article  Google Scholar 

  102. Brikiatis, L. The De Geer, Thulean and Beringia routes: key concepts for understanding early Cenozoic biogeography. J. Biogeogr. 41, 1036–1054 (2014).

    Article  Google Scholar 

  103. Iakovleva, A. I., Brinkhuis, H. & Cavagnetto, C. Late Palaeocene–early Eocene dinoflagellate cysts from the Turgay Strait, Kazakhstan; correlations across ancient seaways. Palaeogeogr. Palaeoclimatol. Palaeoecol. 172, 243–268 (2001).

    Article  Google Scholar 

  104. Rögl, F. Palaeogeographic considerations for Mediterranean and Paratethys seaways (Oligocene to Miocene). Ann. Naturhist. Mus. Wien. A 99, 279–310 (1997).

    Google Scholar 

  105. Akhmetiev, M. A. & Beniamovski, V. N. Paleogene floral assemblages around epicontinental seas and straits in Northern Central Eurasia: proxies for climatic and paleogeographic evolution. Geol. Acta 7, 297–309 (2009).

    Google Scholar 

  106. Iakovleva, A. I., Brinkhuis, H. & Cavagnetto, C. Late Palaeocene–Early Eocene dinoflagellate cysts from the Turgay Strait, Kazakhstan; correlations across ancient seaways. Palaeogeogr. Palaeocl 172, 243–268 (2001).

    Article  Google Scholar 

  107. Straume, E. O., Steinberger, B., Becker, T. W. & Faccenna, C. The impact of mantle convection and dynamic topography on the Cenozoic paleogeography of Central Eurasia and the West Siberian seaway. Earth Planet. Sci. Lett. https://doi.org/10.1016/j.epsl.2024.118615 (2024).

  108. Dickson, A., Davies, M., Bagard, M. & Cohen, A. Quantifying seawater exchange rates in the Eocene Arctic Basin using osmium isotopes. Geochem. Perspect. Let. 24, 7–11 (2022).

    Article  Google Scholar 

  109. Brinkhuis, H. et al. Episodic fresh surface waters in the Eocene Arctic Ocean. Nature 441, 606–609 (2006).

    Article  CAS  Google Scholar 

  110. Hutchinson, D. K. et al. Arctic closure as a trigger for Atlantic overturning at the Eocene–Oligocene Transition. Nat. Commun. https://doi.org/10.1038/s41467-019-11828-z (2019).

  111. Backman, J. et al. Age model and core-seismic integration for the Cenozoic Arctic Coring Expedition sediments from the Lomonosov Ridge. Paleoceanography https://doi.org/10.1029/2007pa001476 (2008).

  112. Straume, E. O., Nummelin, A., Gaina, C. & Nisancioglu, K. H. Climate transition at the Eocene–Oligocene influenced by bathymetric changes to the Atlantic–Arctic oceanic gateways. Proc. Natl Acad. Sci. USA 119, e2115346119 (2022).

    Article  CAS  Google Scholar 

  113. Beard, K. C. The oldest North American primate and mammalian biogeography during the Paleocene–Eocene Thermal Maximum. Proc. Natl Acad. Sci. USA 105, 3815–3818 (2008).

    Article  CAS  Google Scholar 

  114. Parnell-Turner, R. et al. A continuous 55-million-year record of transient mantle plume activity beneath Iceland. Nat. Geosci. 7, 914–919 (2014).

    Article  CAS  Google Scholar 

  115. Wright, J. D. & Miller, K. G. Control of North Atlantic deep water circulation by the Greenland–Scotland Ridge. Paleoceanography 11, 157–170 (1996).

    Article  Google Scholar 

  116. Poore, H., Samworth, R., White, N., Jones, S. & McCave, I. Neogene overflow of Northern Component Water at the Greenland–Scotland Ridge. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2005GC001085 (2006).

    Article  Google Scholar 

  117. Poore, H., White, N. & Maclennan, J. Ocean circulation and mantle melting controlled by radial flow of hot pulses in the Iceland plume. Nat. Geosci. 4, 558–561 (2011).

    Article  CAS  Google Scholar 

  118. Engen, O., Faleide, J. I. & Dyreng, T. K. Opening of the Fram Strait gateway: a review of plate tectonic constraints. Tectonophysics 450, 51–69 (2008).

    Article  Google Scholar 

  119. Jakobsson, M. et al. The early Miocene onset of a ventilated circulation regime in the Arctic Ocean. Nature 447, 986–990 (2007).

    Article  CAS  Google Scholar 

  120. Knies, J. & Gaina, C. Middle Miocene ice sheet expansion in the Arctic: views from the Barents Sea. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2007gc001824 (2008).

    Article  Google Scholar 

  121. Knies, J. et al. Effect of early Pliocene uplift on late Pliocene cooling in the Arctic–Atlantic gateway. Earth Planet. Sc. Lett. 387, 132–144 (2014).

    Article  CAS  Google Scholar 

  122. Knies, J. et al. The Plio-Pleistocene glaciation of the Barents Sea–Svalbard region: a new model based on revised chronostratigraphy. Quaternary Sci. Rev. 28, 812–829 (2009).

    Article  Google Scholar 

  123. Hall, J. R., Allison, M. S., Papadopoulos, M. T., Barfod, D. N. & Jones, S. M. Timing and consequences of bering strait opening: new insights from 40Ar/39Ar dating of the barmur group (Tjörnes Beds), Northern Iceland. Paleoceanogr. Paleoclimatol. 38, e2022PA004539 (2023).

    Article  Google Scholar 

  124. Farmer, J. R. et al. The Bering Strait was flooded 10,000 years before the Last Glacial Maximum. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2206742119 (2023).

    Article  Google Scholar 

  125. De Boer, A. M. & Nof, D. The Bering Strait’s grip on the Northern Hemisphere climate. Deep. Sea Res. I 51, 1347–1366 (2004).

    Article  Google Scholar 

  126. Ortiz, J. D. et al. Provenance of Holocene sediment on the Chukchi–Alaskan margin based on combined diffuse spectral reflectance and quantitative X-ray diffraction analysis. Glob. Planet. Change 68, 73–84 (2009).

    Article  Google Scholar 

  127. Blum, P., Rhinehart, B. & Acton, G. D. International Ocean Discovery Program Expedition 384 Preliminary Report (IODP, 2020).

  128. Parnell-Turner, R., Briais, A., LeVay, L. & the Expedition 395 Scientists International Ocean Discovery Program Expedition 395 Preliminary Report: Reykjanes Mantle Convection and Climate Evolution in the North Atlantic Ocean (IODP, 2024).

  129. Lucchi, R., St John, K. & Ronge, T. A. Expedition 403 Scientific Prospectus: Eastern Fram Strait Paleo-Archive (FRAME) (IODP, 2023).

  130. Clark, D. L. Late Mesozoic and early Cenozoic sediment cores from the Arctic Ocean. Geology 2, 41–44 (1974).

    Article  Google Scholar 

  131. Clark, D. L., Byers, C. W. & Pratt, L. M. Cretaceous black mud from the central Arctic Ocean. Paleoceanography 1, 265–271 (1986).

    Article  Google Scholar 

  132. Stein, R. The late Mesozoic–Cenozoic Arctic Ocean climate and sea ice history: a challenge for past and future scientific ocean drilling. Paleoceanogr. Paleoclimatol. 34, 1851–1894 (2019).

    Article  Google Scholar 

  133. National Center for Environmental Mapping. Seafloor mapping. https://www.ncei.noaa.gov/products/seafloor-mapping.

  134. Felden, J. et al. PANGAEA — data publisher for Earth & Environmental science. Sci. Data 10, 347 (2023).

    Article  Google Scholar 

  135. Lucas, S. et al. Knowledge gaps and impact of future satellite missions to facilitate monitoring of changes in the Arctic Ocean. Remote. Sens. 15, 2852 (2023).

    Article  Google Scholar 

  136. Tzachor, A., Hendel, O. & Richards, C. E. Digital twins: a stepping stone to achieve ocean sustainability? npj Ocean Sustain. 2, 16 (2023).

    Article  Google Scholar 

  137. British Antarctic Survey Digital Twins of the Polar Regions. https://www.bas.ac.uk/project/digital-twins-of-the-polar-regions/.

  138. European Commission European Digital Twin of the Ocean (European DTO). https://research-and-innovation.ec.europa.eu/funding/funding-opportunities/funding-programmes-and-open-calls/horizon-europe/eu-missions-horizon-europe/restore-our-ocean-and-waters/european-digital-twin-ocean-european-dto_en (2022).

  139. Gradstein, F. M., Ogg, J. G., Schmitz, M. D. & Ogg, G. M. (eds) Geologic Time Scale 2020 (Elsevier, 2020).

  140. Meyer, B., Saltus, R. & Chulliat, A. EMAG2v3: Earth Magnetic Anomaly Grid (2-arc-minute resolution). Version 3. NOAA National Centers for Environmental Information. https://doi.org/10.7289/V5H70CVX (2017).

  141. Straume, E. O., Steinberger, B., Becker, T. W. & Faccenna, C. Impact of mantle convection and dynamic topography on the Cenozoic paleogeography of Central Eurasia and the West Siberian Seaway. Earth Planet. Sci. Lett. https://doi.org/10.1016/j.epsl.2024.118615 (2024).

  142. Salous, S. in Radio Propagation Measurement and Channel Modelling (ed. Salous, S.) 149–254 (Wiley Telecom, 2013).

  143. Renard, V. & Allenou, J. P. Sea beam, multi-beam echo-sounding in Jean Charcot — description, evaluation and 1st results. Int. Hydrogr. Rev. 56, 35–67 (1979).

    Google Scholar 

  144. Sandwell, D. T., Müller, R. D., Smith, W. H. F., Garcia, E. & Francis, R. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science 346, 65–67 (2014).

    Article  CAS  Google Scholar 

  145. Smith, W. H. F. & Sandwell, D. T. Bathymetric prediction from dense satellite altimetry and sparse shipboard bathymetry. J. Geophys. Res. Solid Earth 99, 21803–21824 (1994).

    Article  Google Scholar 

  146. GEBCO Compilation Group. GEBCO_2024 Grid (ed. NERC EDS British Oceanographic Data Centre NOC) https://doi.org/10.5285/1c44ce99-0a0d-5f4f-e063-7086abc0ea0f (2023).

  147. Tozer, B. et al. Global bathymetry and topography at 15 Arc Sec: SRTM15+. Earth Space Sci. 6, 1847–1864 (2019).

    Article  Google Scholar 

  148. Sandwell, D. T. et al. Improved bathymetric prediction using geological information: SYNBATH. Earth Space Sci. https://doi.org/10.1029/2021EA002069 (2022).

  149. Nansen, F. The Oceanography of the North Polar Basin. The Norwegian North Polar Expedition 1893–1896 (Longmans Green, 1902).

  150. Weber, J. R. Maps of the Arctic Basin sea-floor — a history of bathymetry and its interpretation. Arctic 36, 121–142 (1983).

    Article  Google Scholar 

  151. Macnab, R. & Grikurov, G. Arctic Bathymetry Workshop, 1–35 (Institute for Geology and Mineral Resources of the Ocean (VNIIOkeangeologia) St Petersburg, 1997).

  152. Jakobsson, M., Cherkis, N., Woodward, J., Macnab, R. & Coakley, B. J. New grid of Arctic bathymetry aids scientists and mapmakers. EOS 81, 89–96 (2000).

    Article  Google Scholar 

  153. Jakobsson, M. et al. The international bathymetric chart of the Arctic Ocean version 4.0. Sci. Data https://doi.org/10.1038/s41597-020-0520-9 (2020).

Download references

Acknowledgements

C.G. acknowledges financial support from the Research Council of Norway (RCN) through its Centres of Excellence scheme, project number 332523 (PHAB) and RCN project 309477 (NOR-R-AM2). M.J. was supported by the Nippon Foundation of Japan and the Swedish Research Council VR (grant 2021-04512). E.O.S. acknowledges support from RCN project 314371 (DOTpaleo). M.-L.T. acknowledges support from the National Sciences Foundation, Office of Polar Programs. K.B. was supported by the Geological Survey of Canada’s UNCLOS programme. S.B. acknowledges support from the Research Council of Norway through its Centres of Excellence scheme, project number 332635 (iC3).

Author information

Authors and Affiliations

Authors

Contributions

C.G. designed the Review structure and wrote the first draft. M.J., M.-L.T., E.O.S. and K.B. provided figures and made substantial contributions to the discussion of content, writing and review/editing of manuscript before submission. S.B. provided a figure and contributed to specific sections of the manuscript. V.S. and A.D. made contributions to specific sections of the manuscript. All authors reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Carmen Gaina.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Kim Senger, Bernard Coakley and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

General Bathymetric Chart of the Oceans (GEBCO): https://www.gebco.net/

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaina, C., Jakobsson, M., Straume, E.O. et al. Arctic Ocean bathymetry and its connections to tectonics, oceanography and climate. Nat Rev Earth Environ 6, 211–227 (2025). https://doi.org/10.1038/s43017-025-00647-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-025-00647-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing