Abstract
For at least the past 50 million years, the Arctic region has had a major role in regulating global climate regimes and their variations through time. In this Review, we discuss the role of the Arctic oceanic basin and its complex bathymetry in controlling ocean circulation and marine cryosphere development. The spatial distribution and depth of various seafloor features, such as ocean gateways, submarine plateaus and continental shelves, influence the pathways of ocean currents, both today and in the past. The Arctic Ocean was an enclosed basin until the Early Eocene (56â48âmillion years ago), when the Eurasian Basin started to form and a shallow sea connected the Arctic to the Tethys Ocean. The connections with the North Atlantic and the global ocean through shallow and deep gateways prompted the transition from a global greenhouse to icehouse climate. However, the Arctic Ocean remains underexplored, as less than one-quarter of its seafloor is mapped in detail. Future integrated geoscience research, modern bathymetric mapping technology and active international programmes are needed to close these data gaps.
Key points
-
Bathymetry controls ocean current pathways, especially along steep slopes, and influences ocean mixing, ventilation, and the horizontal and vertical distribution of temperature and salinity.
-
In the Cretaceous period, when the first Arctic abyssal plain was forming 126 million years ago (Ma), the Arctic Ocean was confined between large land masses and their wide continental shelves.
-
From 56âMa, tectonic changes and mantle dynamics facilitated the opening of shallow and deep seaways within Eurasia and at its continental margins, initiating water exchange with the Tethys, North Atlantic and global oceans.
-
A temporary deepening of the Barents Seaway in the Eocene at 50âMa reduced the strength of the proto-Atlantic Meridional Overturning Circulation via freshwater fluxes from the Arctic, which suppressed dense-water formation at the northern limb of the overturning circulation.
-
Bathymetric changes of the proto-Fram Strait, Barents Seaway and the GreenlandâIcelandâScotland Ridge together with decreasing atmospheric carbon dioxide probably influenced the climate transition from greenhouse to icehouse conditions at the EoceneâOligocene Transition (34âMa).
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
24,99 ⬠/ 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
118,99 ⬠per year
only 9,92 ⬠per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout






Similar content being viewed by others
References
Timmermans, M. L. & Marshall, J. Understanding Arctic Ocean circulation: a review of ocean dynamics in a changing climate. J. Geophys. Res. Oceans https://doi.org/10.1029/2018JC014378 (2020).
Carmack, E. et al. The new Arctic: towards quantifying the increasing role of oceanic heat in sea ice loss. Bull. Am. Meteorol. Soc. https://doi.org/10.1175/BAMS-D-13-00177.1 (2015).
Woodgate, R. A. & Peralta-Ferriz, C. Warming and freshening of the Pacific inflow to the Arctic from 1990â2019 implying dramatic shoaling in Pacific winter water ventilation of the Arctic water column. Geophys. Res. Lett. https://doi.org/10.1029/2021GL092528 (2021).
Jakobsson, M. & Mayer, L. A. Polar region bathymetry: critical knowledge for the prediction of global sea level rise. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.788724 (2022).
IPCC. Climate Change 2023: Synthesis Report (eds Core Writing Team, Lee, H. & Romero, J.) 35â115 (IPCC, 2023).
Jahn, A., Holland, M. M. & Kay, J. E. Projections of an ice-free Arctic Ocean. Nat. Rev. Earth Environ. 5, 164â176 (2024).
Kim, Y.-H., Min, S.-K., Gillett, N. P., Notz, D. & Malinina, E. Observationally-constrained projections of an ice-free Arctic even under a low emission scenario. Nat. Commun. 14, 3139 (2023).
Manabe, S. & Stouffer, R. J. Sensitivity of a global climate model to an increase of CO2 concentration in the atmosphere. J. Geophys. Res. 85, 529â5554 (1980).
Straume, E. O., Nummelin, A., Gaina, C. & Nisancioglu, K. H. Climate transition at the Eocene-Oligocene influenced by bathymetric changes to the Atlantic-Arctic oceanic gateways. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2115346119 (2022).
UN Convention on Law of the Sea. Vol. 1833 UN Treaty Ser. 397, IV, Art. 76 (1982).
Mayer, L. A. et al. The Nippon foundation â GEBCO seabed 2030 project: the quest to see the worldâs oceans completely mapped by 2030. Geosciences 8, 63 (2018).
Dossing, A., Gaina, C., Jackson, H. R. & Andersen, O. B. Cretaceous ocean formation in the High Arctic. Earth Planet. Sci. Lett. https://doi.org/10.1016/j.epsl.2020.116552 (2020).
Herrle, J. O. et al. Mid-Cretaceous high Arctic stratigraphy, climate, and oceanic anoxic events. Geology 43, 403â406 (2015).
Jakobsson, M. et al. Ryder Glacier in northwest Greenland is shielded from warm Atlantic water by a bathymetric sill. Commun. Earth Environ. https://doi.org/10.1038/s43247-020-00043-0 (2020).
Schaffer, J. et al. Bathymetry constrains ocean heat supply to Greenlandâs largest glacier tongue. Nat. Geosci. 13, 227 (2020).
Jakobsson, M. et al. The Holocene retreat dynamics and stability of Petermann Glacier in northwest greenland. Nat. Commun. 9, 2104 (2018).
Jakobsson, M. et al. The International Bathymetric Chart of the Arctic Ocean Version 5.0. Sci. Data 11, 1420 (2024).
Drachev, S. S., Brekke, H., Henriksen, E. & Moore, T. Sedimentary successions of the Arctic region and their hydrocarbon prospectivity. Geol. Soc. Lond. Mem. 57, M57 (2024).
Jakobsson, M., Grantz, A., Kristoffersen, Y. & Macnab, R. Physiographic provinces of the Arctic Ocean seafloor. Geol. Soc. Am. Bull. 115, 1443â1455 (2003).
Straume, E. O. et al. GlobSed: updated total sediment thickness in the Worldâs Oceans. Geochem. Geophys. Geosyst. 20, 1756â1772 (2019).
Nikishin, A. M. et al. Arctic Ocean mega project: Paper 2 â Arctic stratigraphy and regional tectonic structure. Earth Sci. Rev. 217, https://doi.org/10.1016/j.earscirev.2021.103581 (2021).
Lebedeva-Ivanova, N., Gaina, C., Minakov, A. & Kashubin, S. ArcCRUST: Arctic crustal thickness from 3-D gravity inversion. Geochem. Geophys. Geosyst. 20, 3225â3247 (2019).
Gaina, C. & Whittaker, J. in Encyclopedia of Solid Earth Geophysics (ed. Gupta, H. K.) 1120â1124 (Springer, 2021).
Minakov, A., Faleide, J. I., Glebovsky, V. Y. & Mjelde, R. Structure and evolution of the northern BarentsâKara Sea continental margin from integrated analysis of potential fields, bathymetry and sparse seismic data. Geophys. J. Int. 188, 79â102 (2012).
Jokat, W. The sedimentary structure of the Lomonosov Ridge between 88°N and 80°N. Geophys. J. Int. 163, 698â726 (2005).
Kristoffersen, Y., Nilsen, E. H. & Hall, J. K. The High Arctic Large Igneous Province: first seismic-stratigraphic evidence for multiple Mesozoic volcanic pulses on the Lomonosov Ridge, central Arctic Ocean. J. Geol. Soc. Lond. https://doi.org/10.1144/jgs2022-153 (2023).
Boggild, K. et al. in Subaqueous Mass Movements and their Consequences: Advances in Process Understanding, Monitoring and Hazard Assessments (eds Georgiopoulou, A. et al.) 323â340 (Geological Society, 2020).
Argus, D. F. & Gordon, R. G. No-net-rotation model of current plate velocities incorporating plate motion model NUVEL-1. Geophys. Res. Lett. 18, 2039â2042 (1991).
Nikishin, A. M., Gaina, C., Petrov, E. I., Malyshev, N. A. & Freiman, S. I. Eurasia Basin and Gakkel Ridge, Arctic Ocean: crustal asymmetry, ultra-slow spreading and continental rifting revealed by new seismic data. Tectonophysics 746, 64â82 (2018).
Heezen, B. C. & Ewing, M. in Geology of the Arctic (ed. Raaschm, G.) 622â642 (Univ. Toronto Press, 1961).
Edwards, M. H. & Coakley, B. J. SCICEX investigations of the Arctic Ocean system. Chem. Erde-Geochem 63, 281â328 (2003).
Michael, P. J. et al. Magmatic and amagmatic seafloor generation at the ultraslow-spreading Gakkel Ridge, Arctic Ocean. Nature 423, 956â961 (2003).
Sohn, R. A. et al. Explosive volcanism on the ultraslow-spreading Gakkel Ridge, Arctic Ocean. Nature 453, 1236â1238 (2008).
German, C. R. et al. Volcanically hosted venting with indications of ultramafic influence at Aurora hydrothermal field on Gakkel Ridge. Nat. Commun. 13, 6517 (2022).
Ramirez-Llodra, E. et al. Hot vents beneath an icy ocean: the Aurora Vent Field, Gakkel Ridge, revealed. Oceanography 36, 6â17 (2023).
Ding, W. et al. Submarine wide-angle seismic experiments in the High Arctic: the JASMInE Expedition in the slowest spreading Gakkel Ridge. Geosyst. Geoenviron. https://doi.org/10.1016/j.geogeo.2022.100076 (2022).
Schlindwein, V., Demuth, A., Korger, E., Läderach, C. & Schmid, F. Seismicity of the Arctic Mid-Ocean Ridge system. Polar Sci. 9, 146â157 (2015).
Zhang, T. et al. Highly variable magmatic accretion at the ultraslow-spreading Gakkel Ridge. Nature 633, 109â113 (2024).
OâConnor, J. M. et al. Thermochemical anomalies in the upper mantle control Gakkel Ridge accretion. Nat Commun 12, 6962 (2021).
Edmonds, H. N. et al. Discovery of abundant hydrothermal venting on the ultraslow-spreading Gakkel Ridge in the Arctic Ocean. Nature 421, 252â256 (2003).
Gille, S. T., Metzger, E. J. & Tokmakian, R. Seafloor topography and ocean circulation. Oceanography 17, 47â54 (2004).
Jayne, S., Laurent, L. C. S. & Gille, S. T. Connections between ocean bottom topography and Earthâs climate. Oceanography 17, 65â74 (2004).
Buckley, M. W. & Marshall, J. Observations, inferences, and mechanisms of the Atlantic Meridional Overturning Circulation: a review. Rev. Geophys. 54, 5â63 (2016).
Ferreira, D., Marshall, J. & Campin, J. M. Localization of deep water formation: role of atmospheric moisture transport and geometrical constraints on ocean circulation. J. Clim. 23, 1456â1476 (2010).
Hossain, A., Knorr, G., Jokat, W. & Lohmann, G. Opening of the Fram Strait led to the establishment of a modern-like three-layer stratification in the Arctic Ocean during the Miocene. arktos 7, 1â12 (2021).
Timmermans, M. L., Marshall, J., Proshutinsky, A. & Scott, J. Seasonally derived components of the Canada Basin halocline. Geophys. Res. Lett. 44, 5008â5015 (2017).
Broecker, W. S. et al. How much deep water is formed in the Southern Ocean. J. Geophys. Res. Ocean. 103, 15833â15843 (1998).
Fer, I., Müller, M. & Peterson, A. K. Tidal forcing, energetics, and mixing near the Yermak Plateau. Ocean. Sci. 11, 287â304 (2015).
Carpenter, J. R. & Timmermans, M. L. Deep mesoscale eddies in the Canada Basin, Arctic Ocean. Geophys. Res. Lett. https://doi.org/10.1029/2012gl053025 (2012).
Zhang, K., Song, H., Coakley, B., Yang, S. & Fan, W. Investigating eddies from coincident seismic and hydrographic measurements in the Chukchi borderlands, the Western Arctic Ocean. J. Geophys. Research: Ocean. 127, e2022JC018453 (2022).
Björk, G. & Winsor, P. The deep waters of the Eurasian Basin, Arctic Ocean: geothermal heat flow, mixing and renewal. Deep-Sea Res. I 53, 1253â1271 (2006).
Timmermans, M. L. & Garrett, C. Evolution of the deep water in the Canadian Basin in the Arctic Ocean. J. Phys. Oceanogr. 36, 866â874 (2006).
Björk, G. et al. Bathymetry and oceanic flow structure at two deep passages crossing the Lomonosov Ridge. Ocean. Sci. 14, 1â13 (2018).
Aagaard, K., Coachman, L. K. & Carmack, E. On the halocline of the Arctic Ocean. Deep Sea Res. A 28, 529â545 (1981).
Farmer, J. R. et al. Arctic Ocean stratification set by sea level and freshwater inputs since the last ice age. Nat. Geosci. 14, 684â689 (2021).
Bentley, M. J. et al. Direct measurement of warm Atlantic Intermediate Water close to the grounding line of Nioghalvfjerdsfjorden (79°N) Glacier, northeast Greenland. Cryosphere 17, 1821â1837 (2023).
Smelror, M., Petrov, O., Larssen, G. B. & Werner, S. C. Geological History of the Barents Sea: Atlas. 135 (Geological Survey of Norway, 2009).
Embry, A., Dixon, J., Ricketts, B. & Stephenson, R. Canadian ArcticâBeaufort Sea rifted margin tectono-sedimentary element, SE Canada Basin. Geol. Soc. Lond. Mem. https://doi.org/10.1144/M57-2022-54 (2025).
Toro, J., Miller, E. L., Prokopiev, A. V., Zhang, X. & Veselovskiy, R. Mesozoic orogens of the Arctic from Novaya Zemlya to Alaska. J. Geol. Soc. Lond. 173, 989â1006 (2016).
Piepjohn, K., von Gosen, W. & Tessensohn, F. The Eurekan deformation in the Arctic: an outline. J. Geol. Soc. Lond. 173, 1007â1024 (2016).
Coakley, B., Brumley, K., Lebedeva-Ivanova, N. & Mosher, D. Exploring the geology of the central Arctic Ocean; understanding the basin features in place and time. J. Geol. Soc. Lond. 173, 967â987 (2016).
Carey, S. W. in Papers and Proceedings of the Royal Society of Tasmania 89, 255â288 (Royal Society of Tasmania, 1955).
Andersen, O. B. & Knudsen, P. in Fiducial Reference Measurements for Altimetry (eds Mertikas, S. P. & Pail, R.) 83â87 (Springer, 2020).
Gibson, T. M. et al. A detrital zircon test of large-scale terrane displacement along the Arctic margin of North America. Geology 49, 545â550 (2021).
Mukasa, S. B., Andronikov, A., Brumley, K., Mayer, L. A. & Armstrong, A. Basalts from the Chukchi borderland: 40Ar/39Ar ages and geochemistry of submarine intraplate lavas dredged from the Western Arctic Ocean. J. Geophys. Res. Solid Earth 125, e2019JB017604 (2020).
Jackson, H. R. & Chian, D. The Alpha-Mendeleev ridge, a large igneous province with continental affinities. Gff 141, 316â329 (2019).
Dossing, A., Gaina, C. & Brozena, J. M. Building and breaking a large igneous province: an example from the High Arctic. Geophys. Res. Lett. 44, 6011â6019 (2017).
Evangelatos, J., Funck, T. & Mosher, D. C. The sedimentary and crustal velocity structure of Makarov Basin and adjacent Alpha Ridge. Tectonophysics 696, 99â114 (2017).
Seton, M. et al. Global continental and ocean basin reconstructions since 200âMa. Earth-Sci Rev. 113, 212â270 (2012).
Weigelt, E. & Jokat, W. Peculiarities of roughness and thickness of oceanic crust in the Eurasian Basin, Arctic Ocean. Geophys. J. Int. 145, 505â516 (2001).
Backman, J. & Moran, K. Expanding the Cenozoic paleoceanographic record in the Central Arctic Ocean: IODP Expedition 302 Synthesis. Cent. Eur. J. Geosci. 1, 157â175 (2009).
Gaina, C., Nikishin, A. M. & Petrov, E. I. Ultraslow spreading, ridge relocation and compressional events in the East Arctic region: a link to the Eurekan orogeny? Arktos 1, 16 (2015).
Døssing, A., Hansen, T. M., Olesen, A. V., Hopper, J. R. & Funck, T. Gravity inversion predicts the nature of the Amundsen Basin and its continental borderlands near Greenland. Earth Planet. Sci. Lett. 408, 132â145 (2014).
Kristoffersen, Y., Ohta, Y. & Hall, J. K. On the the origin of the Yermak Plateau north of Svalbard, Arctic Ocean. Norw. J. Geol. https://doi.org/10.1785/njg100-1-5 (2020).
Jokat, W., Geissler, W. & Voss, M. Basement structure of the north-western Yermak Plateau. Geophys. Res. Lett. https://doi.org/10.1029/2007GL032892 (2008).
Kristoffersen, Y., Hall, J. K. & Nilsen, E. H. Morris Jesup Spur and Rise north of Greenland â exploring present seabed features, the history of sediment deposition, volcanism and tectonic deformation at a Late Cretaceous/early Cenozoic triple junction in the Arctic Ocean. Norw. J. Geol. https://doi.org/10.1785/njg101-1-4 (2021).
Glebovsky, V. Y. et al. Formation of the Eurasia Basin in the Arctic Ocean as inferred from geohistorical analysis of the anomalous magnetic field. Geotectonics 40, 263â281 (2006).
Jokat, W., Lehmann, P., Damaske, D. & Bradley Nelson, J. Magnetic signature of North-East Greenland, the Morris Jesup Rise, the Yermak Plateau, the central Fram Strait: constraints for the rift/drift history between Greenland and Svalbard since the Eocene. Tectonophysics 691, 98â109 (2016).
Dumais, M.-A., Gernigon, L., Olesen, O., Johansen, S. E. & Brönner, M. New interpretation of the spreading evolution of the Knipovich Ridge derived from aeromagnetic data. Geophys. J. Int. 224, 1422â1428 (2020).
Hoggard, M., Austermann, J., Randel, C. & Stephenson, S. in Mantle Convection and Surface Expressions (eds Marquardt, H. et al.) 371â411 (Wiley, 2021).
Lu, C., Grand, S. P., Lai, H. Y. & Garnero, E. J. TX2019slab: a new P and S tomography model incorporating subducting slabs. J. Geophys. Res. Solid Earth 124, 11549â11567 (2019).
Jackson, M. G., Konter, J. G. & Becker, T. W. Primordial helium entrained by the hottest mantle plumes. Nature 542, 340 (2017).
Straume, E. O., Gaina, C., Medvedev, S. & Nisancioglu, K. H. Global Cenozoic paleobathymetry with a focus on the Northern Hemisphere oceanic gateways. Gondwana Res. 86, 126â143 (2020).
Percival, L. M. E. et al. Cretaceous Large Igneous Provinces: from volcanic formation to environmental catastrophes and biological crises. Geol. Soc. Lond. Spec. Publ. https://doi.org/10.1144/SP544-2023-88 (2024).
Jenkyns, H. C. Geochemistry of oceanic anoxic events. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2009GC002788 (2010).
Schröder-Adams, C. J., Herrle, J. O., Selby, D., Quesnel, A. & Froude, G. Influence of the high Arctic igneous province on the Cenomanian/Turonian boundary interval, Sverdrup Basin, high Canadian Arctic. Earth Planet. Sci. Lett. 511, 76â88 (2019).
Galloway, J. M. et al. A mercury and trace element geochemical record across Oceanic Anoxic Event 1b in Arctic Canada. Palaeogeogr. Palaeoclimatol. Palaeoecol. 617, 111490 (2023).
Grasby, S. E. et al. Oceanic Anoxic Event 3 in Arctic Canada â arc volcanism and ocean fertilization drove anoxia. Geol. Soc. Am. Bull. https://doi.org/10.1130/b37632.1 (2024).
Clark, D. L., Whitman, R. R., Morgan, K. A. & Mackey, S. D. Stratigraphy and glacial-marine sediments of the Amerasian Basin, central Arctic Ocean. Spec. Pap. Geol. Soc. Am. 181, 1â57 (1980).
Mudie, P. J. & Blasco, S. M. in Initial Geological Report on CESAR â the Canadian Expedition to Study the Alpha Ridge, Arctic Ocean (eds Jackson, H. R. et al.) 55â99 (Geological Survey of Canada, 1985).
Jenkyns, H. C., Forster, A., Schouten, S. & Sinninghe Damsté, J. S. High temperatures in the Late Cretaceous Arctic Ocean. Nature 432, 888â892 (2004).
Niezgodzki, I., Tyszka, J., Knorr, G. & Lohmann, G. Was the Arctic Ocean ice free during the latest Cretaceous? The role of CO2 and gateway configurations. Glob. Planet. Change 177, 201â212 (2019).
Boyd, D. W. & Lillegraven, J. A. Persistence of the Western Interior Seaway: historical background and significance of ichnogenus Rhizocorallium in Paleocene strata, south-central Wyoming. Rocky Mt. Geol. 46, 43â69 (2011).
Akhmetiev, M. A. et al. The Paleogene history of the Western Siberian seaway â a connection of the peri-Tethys to the Arctic Ocean. Austrian J. Earth Sci. 105, 50â67 (2012).
Lasabuda, A. P. E. et al. Paleobathymetric reconstructions of the SW Barents Seaway and their implications for AtlanticâArctic Ocean circulation. Commun. Earth Environ. https://doi.org/10.1038/s43247-023-00899-y (2023).
Gaina, C., Nasuti, A., Kimbell, G. S. & Blischke, A. Break-up and seafloor spreading domains in the NE Atlantic. Geol. Soc. Lond. Spec. Publ. 447, 393â417 (2017).
Barrier, E., Vrielynck, B., Brouillet, J.-F. & Brunet, M.-F. Paleotectonic reconstruction of the central Tethyan realm. Tectonono-Sedimentary-Palinspastic Maps from Late Permian to Pliocene (CCGM/CGMW, 2018).
Blakey, R. Paleotectonic and paleogeographic history of the Arctic region. Atl. Geosci. 57, 7â39 (2021).
Barke, J. et al. Orbitally forced Azolla blooms and Middle Eocene Arctic hydrology: clues from palynology. Geology 39, 427â430 (2011).
Palcu, D. V. & Krijgsman, W. The dire straits of Paratethys: gateways to the anoxic giant of Eurasia. Geol. Soc. Lond. Spec. Publ. https://doi.org/10.1144/SP523-2021-73 (2022).
Kaya, M. Y. et al. Paleogene evolution and demise of the proto-Paratethys Sea in Central Asia (Tarim and Tajik basins): role of intensified tectonic activity at ca. 41âMa. Basin Res. 31, 461â486 (2019).
Brikiatis, L. The De Geer, Thulean and Beringia routes: key concepts for understanding early Cenozoic biogeography. J. Biogeogr. 41, 1036â1054 (2014).
Iakovleva, A. I., Brinkhuis, H. & Cavagnetto, C. Late Palaeoceneâearly Eocene dinoflagellate cysts from the Turgay Strait, Kazakhstan; correlations across ancient seaways. Palaeogeogr. Palaeoclimatol. Palaeoecol. 172, 243â268 (2001).
Rögl, F. Palaeogeographic considerations for Mediterranean and Paratethys seaways (Oligocene to Miocene). Ann. Naturhist. Mus. Wien. A 99, 279â310 (1997).
Akhmetiev, M. A. & Beniamovski, V. N. Paleogene floral assemblages around epicontinental seas and straits in Northern Central Eurasia: proxies for climatic and paleogeographic evolution. Geol. Acta 7, 297â309 (2009).
Iakovleva, A. I., Brinkhuis, H. & Cavagnetto, C. Late PalaeoceneâEarly Eocene dinoflagellate cysts from the Turgay Strait, Kazakhstan; correlations across ancient seaways. Palaeogeogr. Palaeocl 172, 243â268 (2001).
Straume, E. O., Steinberger, B., Becker, T. W. & Faccenna, C. The impact of mantle convection and dynamic topography on the Cenozoic paleogeography of Central Eurasia and the West Siberian seaway. Earth Planet. Sci. Lett. https://doi.org/10.1016/j.epsl.2024.118615 (2024).
Dickson, A., Davies, M., Bagard, M. & Cohen, A. Quantifying seawater exchange rates in the Eocene Arctic Basin using osmium isotopes. Geochem. Perspect. Let. 24, 7â11 (2022).
Brinkhuis, H. et al. Episodic fresh surface waters in the Eocene Arctic Ocean. Nature 441, 606â609 (2006).
Hutchinson, D. K. et al. Arctic closure as a trigger for Atlantic overturning at the EoceneâOligocene Transition. Nat. Commun. https://doi.org/10.1038/s41467-019-11828-z (2019).
Backman, J. et al. Age model and core-seismic integration for the Cenozoic Arctic Coring Expedition sediments from the Lomonosov Ridge. Paleoceanography https://doi.org/10.1029/2007pa001476 (2008).
Straume, E. O., Nummelin, A., Gaina, C. & Nisancioglu, K. H. Climate transition at the EoceneâOligocene influenced by bathymetric changes to the AtlanticâArctic oceanic gateways. Proc. Natl Acad. Sci. USA 119, e2115346119 (2022).
Beard, K. C. The oldest North American primate and mammalian biogeography during the PaleoceneâEocene Thermal Maximum. Proc. Natl Acad. Sci. USA 105, 3815â3818 (2008).
Parnell-Turner, R. et al. A continuous 55-million-year record of transient mantle plume activity beneath Iceland. Nat. Geosci. 7, 914â919 (2014).
Wright, J. D. & Miller, K. G. Control of North Atlantic deep water circulation by the GreenlandâScotland Ridge. Paleoceanography 11, 157â170 (1996).
Poore, H., Samworth, R., White, N., Jones, S. & McCave, I. Neogene overflow of Northern Component Water at the GreenlandâScotland Ridge. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2005GC001085 (2006).
Poore, H., White, N. & Maclennan, J. Ocean circulation and mantle melting controlled by radial flow of hot pulses in the Iceland plume. Nat. Geosci. 4, 558â561 (2011).
Engen, O., Faleide, J. I. & Dyreng, T. K. Opening of the Fram Strait gateway: a review of plate tectonic constraints. Tectonophysics 450, 51â69 (2008).
Jakobsson, M. et al. The early Miocene onset of a ventilated circulation regime in the Arctic Ocean. Nature 447, 986â990 (2007).
Knies, J. & Gaina, C. Middle Miocene ice sheet expansion in the Arctic: views from the Barents Sea. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2007gc001824 (2008).
Knies, J. et al. Effect of early Pliocene uplift on late Pliocene cooling in the ArcticâAtlantic gateway. Earth Planet. Sc. Lett. 387, 132â144 (2014).
Knies, J. et al. The Plio-Pleistocene glaciation of the Barents SeaâSvalbard region: a new model based on revised chronostratigraphy. Quaternary Sci. Rev. 28, 812â829 (2009).
Hall, J. R., Allison, M. S., Papadopoulos, M. T., Barfod, D. N. & Jones, S. M. Timing and consequences of bering strait opening: new insights from 40Ar/39Ar dating of the barmur group (Tjörnes Beds), Northern Iceland. Paleoceanogr. Paleoclimatol. 38, e2022PA004539 (2023).
Farmer, J. R. et al. The Bering Strait was flooded 10,000âyears before the Last Glacial Maximum. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2206742119 (2023).
De Boer, A. M. & Nof, D. The Bering Straitâs grip on the Northern Hemisphere climate. Deep. Sea Res. I 51, 1347â1366 (2004).
Ortiz, J. D. et al. Provenance of Holocene sediment on the ChukchiâAlaskan margin based on combined diffuse spectral reflectance and quantitative X-ray diffraction analysis. Glob. Planet. Change 68, 73â84 (2009).
Blum, P., Rhinehart, B. & Acton, G. D. International Ocean Discovery Program Expedition 384 Preliminary Report (IODP, 2020).
Parnell-Turner, R., Briais, A., LeVay, L. & the Expedition 395 Scientists International Ocean Discovery Program Expedition 395 Preliminary Report: Reykjanes Mantle Convection and Climate Evolution in the North Atlantic Ocean (IODP, 2024).
Lucchi, R., St John, K. & Ronge, T. A. Expedition 403 Scientific Prospectus: Eastern Fram Strait Paleo-Archive (FRAME) (IODP, 2023).
Clark, D. L. Late Mesozoic and early Cenozoic sediment cores from the Arctic Ocean. Geology 2, 41â44 (1974).
Clark, D. L., Byers, C. W. & Pratt, L. M. Cretaceous black mud from the central Arctic Ocean. Paleoceanography 1, 265â271 (1986).
Stein, R. The late MesozoicâCenozoic Arctic Ocean climate and sea ice history: a challenge for past and future scientific ocean drilling. Paleoceanogr. Paleoclimatol. 34, 1851â1894 (2019).
National Center for Environmental Mapping. Seafloor mapping. https://www.ncei.noaa.gov/products/seafloor-mapping.
Felden, J. et al. PANGAEA â data publisher for Earth & Environmental science. Sci. Data 10, 347 (2023).
Lucas, S. et al. Knowledge gaps and impact of future satellite missions to facilitate monitoring of changes in the Arctic Ocean. Remote. Sens. 15, 2852 (2023).
Tzachor, A., Hendel, O. & Richards, C. E. Digital twins: a stepping stone to achieve ocean sustainability? npj Ocean Sustain. 2, 16 (2023).
British Antarctic Survey Digital Twins of the Polar Regions. https://www.bas.ac.uk/project/digital-twins-of-the-polar-regions/.
European Commission European Digital Twin of the Ocean (European DTO). https://research-and-innovation.ec.europa.eu/funding/funding-opportunities/funding-programmes-and-open-calls/horizon-europe/eu-missions-horizon-europe/restore-our-ocean-and-waters/european-digital-twin-ocean-european-dto_en (2022).
Gradstein, F. M., Ogg, J. G., Schmitz, M. D. & Ogg, G. M. (eds) Geologic Time Scale 2020 (Elsevier, 2020).
Meyer, B., Saltus, R. & Chulliat, A. EMAG2v3: Earth Magnetic Anomaly Grid (2-arc-minute resolution). Version 3. NOAA National Centers for Environmental Information. https://doi.org/10.7289/V5H70CVX (2017).
Straume, E. O., Steinberger, B., Becker, T. W. & Faccenna, C. Impact of mantle convection and dynamic topography on the Cenozoic paleogeography of Central Eurasia and the West Siberian Seaway. Earth Planet. Sci. Lett. https://doi.org/10.1016/j.epsl.2024.118615 (2024).
Salous, S. in Radio Propagation Measurement and Channel Modelling (ed. Salous, S.) 149â254 (Wiley Telecom, 2013).
Renard, V. & Allenou, J. P. Sea beam, multi-beam echo-sounding in Jean Charcot â description, evaluation and 1st results. Int. Hydrogr. Rev. 56, 35â67 (1979).
Sandwell, D. T., Müller, R. D., Smith, W. H. F., Garcia, E. & Francis, R. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science 346, 65â67 (2014).
Smith, W. H. F. & Sandwell, D. T. Bathymetric prediction from dense satellite altimetry and sparse shipboard bathymetry. J. Geophys. Res. Solid Earth 99, 21803â21824 (1994).
GEBCO Compilation Group. GEBCO_2024 Grid (ed. NERC EDS British Oceanographic Data Centre NOC) https://doi.org/10.5285/1c44ce99-0a0d-5f4f-e063-7086abc0ea0f (2023).
Tozer, B. et al. Global bathymetry and topography at 15 Arc Sec: SRTM15+. Earth Space Sci. 6, 1847â1864 (2019).
Sandwell, D. T. et al. Improved bathymetric prediction using geological information: SYNBATH. Earth Space Sci. https://doi.org/10.1029/2021EA002069 (2022).
Nansen, F. The Oceanography of the North Polar Basin. The Norwegian North Polar Expedition 1893â1896 (Longmans Green, 1902).
Weber, J. R. Maps of the Arctic Basin sea-floor â a history of bathymetry and its interpretation. Arctic 36, 121â142 (1983).
Macnab, R. & Grikurov, G. Arctic Bathymetry Workshop, 1â35 (Institute for Geology and Mineral Resources of the Ocean (VNIIOkeangeologia) St Petersburg, 1997).
Jakobsson, M., Cherkis, N., Woodward, J., Macnab, R. & Coakley, B. J. New grid of Arctic bathymetry aids scientists and mapmakers. EOS 81, 89â96 (2000).
Jakobsson, M. et al. The international bathymetric chart of the Arctic Ocean version 4.0. Sci. Data https://doi.org/10.1038/s41597-020-0520-9 (2020).
Acknowledgements
C.G. acknowledges financial support from the Research Council of Norway (RCN) through its Centres of Excellence scheme, project number 332523 (PHAB) and RCN project 309477 (NOR-R-AM2). M.J. was supported by the Nippon Foundation of Japan and the Swedish Research Council VR (grant 2021-04512). E.O.S. acknowledges support from RCN project 314371 (DOTpaleo). M.-L.T. acknowledges support from the National Sciences Foundation, Office of Polar Programs. K.B. was supported by the Geological Survey of Canadaâs UNCLOS programme. S.B. acknowledges support from the Research Council of Norway through its Centres of Excellence scheme, project number 332635 (iC3).
Author information
Authors and Affiliations
Contributions
C.G. designed the Review structure and wrote the first draft. M.J., M.-L.T., E.O.S. and K.B. provided figures and made substantial contributions to the discussion of content, writing and review/editing of manuscript before submission. S.B. provided a figure and contributed to specific sections of the manuscript. V.S. and A.D. made contributions to specific sections of the manuscript. All authors reviewed and edited the manuscript before submission.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Earth & Environment thanks Kim Senger, Bernard Coakley and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisherâs note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Related links
General Bathymetric Chart of the Oceans (GEBCO): https://www.gebco.net/
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Gaina, C., Jakobsson, M., Straume, E.O. et al. Arctic Ocean bathymetry and its connections to tectonics, oceanography and climate. Nat Rev Earth Environ 6, 211â227 (2025). https://doi.org/10.1038/s43017-025-00647-0
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s43017-025-00647-0