Abstract.
The radioactive contamination of a BaF2 scintillation crystal with mass of 1.714 kg was measured over 101 hours in the low-background DAMA/R&D set-up deep underground (3600 m w.e.) at the Gran Sasso National Laboratories of INFN (LNGS, Italy). The half-life of 212Po (present in the crystal scintillator due to contamination by radium) was measured as \( T_{1/2}({}^{212}Po)\) = 298.8±0.8(stat.)±1.4(syst.) ns by the analysis of the events' pulse profiles. The 222Rn nuclide is known as 100% decaying via the emission of the \( \alpha\) particle with T 1/2 = 3.82 d; however, its \( \beta\) decay is also energetically allowed with \( Q_{\beta}=24\pm 21\) keV. Search for decay chains of events with specific pulse shapes characteristic for \( \alpha\) or for \( \beta/\gamma\) signals and with known energies and time differences allowed us to set, for the first time, the limit on the branching ratio of 222Rn relatively to \( \beta\) decay as \( B_{\beta} < 0.13\) % at 90% C.L. (equivalent to limit on partial half-life \( T_{1/2}^{\beta}> 8.0\) y). The half-life limits of 212Pb, 222Rn and 226Ra relatively to 2\( \beta\) decays are also improved in comparison with the earlier results.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
S.E. Rathi et al., Nucl. Instrum. Methods A 482, 355 (2002)
C. Guerrero et al., Nucl. Instrum. Methods A 608, 424 (2009)
D.M. Seliverstov et al., Nucl. Instrum. Methods A 695, 369 (2012)
J.D. Vergados et al., Rep. Prog. Phys. 75, 106301 (2012)
A. Giuliani, A. Poves, Adv. High Energy Phys. 2012, 857016 (2012)
J.J. Gomez-Cadenas et al., Riv. Nuovo Cimento 35, 29 (2012)
B. Schwingenheuer, Ann. Phys. (Berlin) 525, 269 (2013)
R. Saakyan, Annu. Rev. Nucl. Part. Sci. 63, 503 (2013)
J. Maalampi, J. Suhonen, Adv. High Energy Phys. 2013, 505874 (2013)
O. Cremonesi, M. Pavan, Adv. High Energy Phys. 2014, 951432 (2014)
M. Wang et al., Chin. Phys. C 36, 1603 (2012)
V.I. Tretyak, Yu.G. Zdesenko, At. Data Nucl. Data Tables 61, 43 (1995)
V.I. Tretyak, Yu.G. Zdesenko, At. Data Nucl. Data Tables 80, 83 (2002)
A.P. Meshik et al., Phys. Rev. C 64, 035205 (2001)
M. Pujol et al., Geochim. Cosmochim. Acta 73, 6834 (2009)
R. Cerulli et al., Nucl. Instrum. Methods A 525, 535 (2004)
V.I. Tretyak et al., Europhys. Lett. 69, 41 (2005) more detailed version: arXiv:nucl-ex/0404016
H.O. Back et al., Phys. Lett. B 525, 29 (2002)
C. Aberle et al., JINST 06, P11006 (2011)
H.O. Back et al., Phys. Lett. B 563, 23 (2003)
P. Dorenbos et al., IEEE Trans. Nucl. Sci. 42, 2190 (1995)
I.V. Khodyuk et al., IEEE Trans. Nucl. Sci. 59, 3320 (2012)
S. Pecourt et al., Astropart. Phys. 11, 457 (1999)
R.B. Firestone, Table of Isotopes (John Wiley & Sons, N.Y., 1996) and 1998 CD update
E. Browne, Nucl. Data Sheets 104, 427 (2005)
G. Bellini et al., Eur. Phys. J. A 49, 92 (2013)
S. Singh, A.K. Jain, J.K. Tuli, Nucl. Data Sheets 112, 2851 (2011)
B. Singh et al., Nucl. Data Sheets 84, 487 (1998)
National Nuclear Data Center, http://www.nndc.bnl.gov/logft/
G.J. Feldman, R.D. Cousins, Phys. Rev. D 57, 3873 (1998)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by C. Broggini
Rights and permissions
About this article
Cite this article
Belli, P., Bernabei, R., Cappella, F. et al. Investigation of rare nuclear decays with BaF2 crystal scintillator contaminated by radium. Eur. Phys. J. A 50, 134 (2014). https://doi.org/10.1140/epja/i2014-14134-6
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1140/epja/i2014-14134-6