Proceedings of the International Geometry Center

ISSN-print: 2072-9812
ISSN-online: 2409-8906
ISO: 26324:2012
Archives

Bypassing dynamical systems: a simple way to get the box-counting dimension of the graph of the Weierstrass function

##plugins.themes.bootstrap3.article.main##

Claire David
http://orcid.org/0000-0002-4729-0733

Abstract

In the following, bypassing dynamical systems tools, we propose a simple means of computing the box dimension of the graph of the classical Weierstrass function defined, for any real number~$x$, by
\[{\mathcal W}(x)= \sum_{n=0}^{+\infty} \lambda^n\,\cos \left ( 2\, \pi\,N_b^n\,x \right),\]

where $\lambda$ and $N_b$ are two real numbers such that $0 <\lambda<1$, $N_b\,\in\,\N$ and $\lambda\,N_b >1$, using a sequence a graphs that approximate the studied one.

Keywords:
Classical Weierstrass function, box dimension

##plugins.themes.bootstrap3.article.details##

How to Cite
David, C. (2018). Bypassing dynamical systems: a simple way to get the box-counting dimension of the graph of the Weierstrass function. Proceedings of the International Geometry Center, 11(2). https://doi.org/10.15673/tmgc.v11i2.1028
Section
Papers

References

1. Krzysztof Baranski, Balazs Barany, Julia Romanowska. On the dimension of the graph of the classical Weierstrass function. Adv. Math., 265:32-59, 2014.

2. A. S. Besicovitch, H. D. Ursell. Sets of fractional dimensions (V): on dimensional numbers of some continuous curves. J. London Math. Soc., s1-12(1):18-25, 1937.

3. Claire David. Laplacian, on the graph of the Weierstrass function. arXiv:1703.03371.

4. K. J. Falconer. The geometry of fractal sets, volume 85 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1986.

5. G. H. Hardy. Theorems Connected with Maclaurin’s Test for the Convergence of Series. Proc. London Math. Soc. (2), 9:126-144, 1911.

6. Tian You Hu, Ka-Sing Lau. Fractal dimensions and singularities of the Weierstrass type functions. Trans. Amer. Math. Soc., 335(2):649-665, 1993.

7. Brian R. Hunt. The Hausdorff dimension of graphs of Weierstrass functions. Proc. Amer. Math. Soc., 126(3):791-800, 1998.

8. James L. Kaplan, John Mallet-Paret, James A. Yorke. The Lyapunov dimension of a nowhere differentiable attracting torus. Ergodic Theory Dynam. Systems, 4(2):261-281, 1984.

9. Gerhard Keller. A simpler proof for the dimension of the graph of the classical Weier-strass function. Ann. Inst. Henri Poincare Probab. Stat., 53(1):169-181, 2017.

10. F. Ledrappier, L.-S. Young. The metric entropy of diffeomorphisms. II. Relations between entropy, exponents and dimension. Ann. of Math. (2), 122(3):540-574, 1985.

11. Francois Ledrappier. On the dimension of some graphs. In Symbolic dynamics and its applications (New Haven, CT, 1991), volume 135 of Contemp. Math., 285-293. Amer. Math. Soc., Providence, RI, 1992.

12. Benoit B. Mandelbrot. Fractals: form,, chance, and dimension. W. H. Freeman and Co., San Francisco, Calif., revised edition, 1977. Translated from the French.

13. Yakov B. Pesin. Dimension theory in dynamical systems. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 1997. Contemporary views and applications.

14. F. Przytycki, M. Urbanski. On the Hausdorff dimension of some fractal sets. Studia Math., 93(2):155-186, 1989.

15. Feliks Przytycki, Mariusz Urbanski. Conformal fractals: ergodic theory methods, volume 371 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 2010.

16. Weixiao Shen. Hausdorff dimension of the graphs of the classical Weierstrass functions. Math. Z., 289(1-2):223-266, 2018.

17. E. C. Titchmarsh. The theory of functions. Oxford University Press, Oxford, second edition, 1939.

18. K. Weierstrass. Uber kontinuierliche Funktionen eines reellen arguments, die fur keinen Wert des letzteren einen bestimmten Differentialquotienten besitzen. Journal fur die reine und angewandte Mathematik, 79:29-31, 1875.