##plugins.themes.bootstrap3.article.main##
Abstract
In the following, bypassing dynamical systems tools, we propose a simple means of computing the box dimension of the graph of the classical Weierstrass function defined, for any real number~$x$, by
\[{\mathcal W}(x)= \sum_{n=0}^{+\infty} \lambda^n\,\cos \left ( 2\, \pi\,N_b^n\,x \right),\]
where $\lambda$ and $N_b$ are two real numbers such that $0 <\lambda<1$, $N_b\,\in\,\N$ and $\lambda\,N_b >1$, using a sequence a graphs that approximate the studied one.
##plugins.themes.bootstrap3.article.details##
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution (CC-BY) 4.0 License that allows others to share the work with an acknowledgment of the work’s authorship and initial publication in this journal.
Provided they are the owners of the copyright to their work, authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository, in a journal or publish it in a book), with an acknowledgment of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories, disciplinary repositories, or on their website) prior to and during the submission process.
References
2. A. S. Besicovitch, H. D. Ursell. Sets of fractional dimensions (V): on dimensional numbers of some continuous curves. J. London Math. Soc., s1-12(1):18-25, 1937.
3. Claire David. Laplacian, on the graph of the Weierstrass function. arXiv:1703.03371.
4. K. J. Falconer. The geometry of fractal sets, volume 85 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1986.
5. G. H. Hardy. Theorems Connected with Maclaurin’s Test for the Convergence of Series. Proc. London Math. Soc. (2), 9:126-144, 1911.
6. Tian You Hu, Ka-Sing Lau. Fractal dimensions and singularities of the Weierstrass type functions. Trans. Amer. Math. Soc., 335(2):649-665, 1993.
7. Brian R. Hunt. The Hausdorff dimension of graphs of Weierstrass functions. Proc. Amer. Math. Soc., 126(3):791-800, 1998.
8. James L. Kaplan, John Mallet-Paret, James A. Yorke. The Lyapunov dimension of a nowhere differentiable attracting torus. Ergodic Theory Dynam. Systems, 4(2):261-281, 1984.
9. Gerhard Keller. A simpler proof for the dimension of the graph of the classical Weier-strass function. Ann. Inst. Henri Poincare Probab. Stat., 53(1):169-181, 2017.
10. F. Ledrappier, L.-S. Young. The metric entropy of diffeomorphisms. II. Relations between entropy, exponents and dimension. Ann. of Math. (2), 122(3):540-574, 1985.
11. Francois Ledrappier. On the dimension of some graphs. In Symbolic dynamics and its applications (New Haven, CT, 1991), volume 135 of Contemp. Math., 285-293. Amer. Math. Soc., Providence, RI, 1992.
12. Benoit B. Mandelbrot. Fractals: form,, chance, and dimension. W. H. Freeman and Co., San Francisco, Calif., revised edition, 1977. Translated from the French.
13. Yakov B. Pesin. Dimension theory in dynamical systems. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 1997. Contemporary views and applications.
14. F. Przytycki, M. Urbanski. On the Hausdorff dimension of some fractal sets. Studia Math., 93(2):155-186, 1989.
15. Feliks Przytycki, Mariusz Urbanski. Conformal fractals: ergodic theory methods, volume 371 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 2010.
16. Weixiao Shen. Hausdorff dimension of the graphs of the classical Weierstrass functions. Math. Z., 289(1-2):223-266, 2018.
17. E. C. Titchmarsh. The theory of functions. Oxford University Press, Oxford, second edition, 1939.
18. K. Weierstrass. Uber kontinuierliche Funktionen eines reellen arguments, die fur keinen Wert des letzteren einen bestimmten Differentialquotienten besitzen. Journal fur die reine und angewandte Mathematik, 79:29-31, 1875.