Skip to main content

The Australian Summer Monsoon in Current and Future Climate

  • Chapter
  • First Online:
The Monsoons and Climate Change

Part of the book series: Springer Climate ((SPCL))

  • 2208 Accesses

  • 23 Citations

Abstract

As the counterpart of the Asian monsoon in the Northern Hemisphere, in this chapter the Australian summer monsoon covers a spatial domain encompassing tropical Sumatra and the Java Islands, and the adjacent waters in the west, extending south and eastward into the Timor and Timor Sea region and further penetrating into the tropical Australian continent. This chapter documents its observed features at a range of temporal and spatial scales, evaluates how well the current climate models can reproduce these fundamental features, and finally summarizes current projections of its potential changes in future and primary processes leading to such changes. The monsoon system shows pronounced seasonal variations of rainfall and prevailing wind, with its austral summer season rainfall being supported by the reversal of easterly trade winds into deep and moist westerlies. Its onsets are influenced by a number of factors including the Madden-Julian Oscillation (MJO), land-sea thermal contrast, the influence of middle latitude systems, and the inherent atmospheric instability. The inter-annual variations of the monsoon onset are correlated to El Niño-Southern Oscillation (ENSO), but the total summer monsoon rainfall is not. This is partially attributed to the seasonally varying air-sea interactions over the waters north of the Australian continent. The Asian aerosol and tropical SSTs near the continent have been used in explaining observed rainfall increases northwest of the tropical Australian continent. In fully coupled global climate model simulations, the broad features of the monsoon mean climate, its seasonal and inter-annual variations of rainfall, temperature and circulation, can be reasonably reproduced by a majority of the models, but there are very large variations in individual model skills. The relevant importance of primary large-scale drivers governing the monsoon variations differs significantly across current climate models, with some models having too strong an ENSO influence. There is great uncertainty in model projections of the changes in the monsoon rainfall under global warming. A weak change in mean rainfall from multi-model ensemble averages is largely produced accompanied by large model discrepancies, with the number of the models showing likely increases in rainfall being matched by roughly the same number of the models showing decreased rainfall. There is a lack of consensus regarding the changes in the Australian monsoon onset/retreat, with studies using rainfall in defining the monsoon onset suggesting the onset comes earlier. However, for the studies using circulation as one of the criteria, they showed a possible delay due to the weakening and shifting of the atmospheric circulation. Future progress to improve the modelling skill and increase our confidence of the projection of the Australian monsoon relies on a number of key aspects, including the improved model physics and dynamics with increased model resolutions; improved representations of key drivers of the monsoon system, such as realistic MJO, ENSO and Indian Ocean Dipole (IOD) in climate models; and improved understanding of the model discrepancies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from €39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR 106.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

') var buybox = document.querySelector("[data-id=id_"+ timestamp +"]").parentNode var buyingOptions = buybox.querySelectorAll(".buying-option") ;[].slice.call(buyingOptions).forEach(initCollapsibles) var buyboxMaxSingleColumnWidth = 480 function initCollapsibles(subscription, index) { var toggle = subscription.querySelector(".buying-option-price") subscription.classList.remove("expanded") var form = subscription.querySelector(".buying-option-form") var priceInfo = subscription.querySelector(".price-info") var buyingOption = toggle.parentElement if (toggle && form && priceInfo) { toggle.setAttribute("role", "button") toggle.setAttribute("tabindex", "0") toggle.addEventListener("click", function (event) { var expandedBuyingOptions = buybox.querySelectorAll(".buying-option.expanded") var buyboxWidth = buybox.offsetWidth ;[].slice.call(expandedBuyingOptions).forEach(function(option) { if (buyboxWidth <= buyboxMaxSingleColumnWidth && option != buyingOption) { hideBuyingOption(option) } }) var expanded = toggle.getAttribute("aria-expanded") === "true" || false toggle.setAttribute("aria-expanded", !expanded) form.hidden = expanded if (!expanded) { buyingOption.classList.add("expanded") } else { buyingOption.classList.remove("expanded") } priceInfo.hidden = expanded }, false) } } function hideBuyingOption(buyingOption) { var toggle = buyingOption.querySelector(".buying-option-price") var form = buyingOption.querySelector(".buying-option-form") var priceInfo = buyingOption.querySelector(".price-info") toggle.setAttribute("aria-expanded", false) form.hidden = true buyingOption.classList.remove("expanded") priceInfo.hidden = true } function initKeyControls() { document.addEventListener("keydown", function (event) { if (document.activeElement.classList.contains("buying-option-price") && (event.code === "Space" || event.code === "Enter")) { if (document.activeElement) { event.preventDefault() document.activeElement.click() } } }, false) } function initialStateOpen() { var buyboxWidth = buybox.offsetWidth ;[].slice.call(buybox.querySelectorAll(".buying-option")).forEach(function (option, index) { var toggle = option.querySelector(".buying-option-price") var form = option.querySelector(".buying-option-form") var priceInfo = option.querySelector(".price-info") if (buyboxWidth > buyboxMaxSingleColumnWidth) { toggle.click() } else { if (index === 0) { toggle.click() } else { toggle.setAttribute("aria-expanded", "false") form.hidden = "hidden" priceInfo.hidden = "hidden" } } }) } initialStateOpen() if (window.buyboxInitialised) return window.buyboxInitialised = true initKeyControls() })()

Institutional subscriptions

Similar content being viewed by others

References

  • Adler RF, Huffman GJ, Chang A, Ferraro R, Xie P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P, Nelkin E (2003) The Version 2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-Present). J Hydrometeor 4:1147–1167

    Google Scholar 

  • Behera SK, Luo JJ, Masson S, Rao SA, Sakuma H, Yamagata T (2006) A CGCM study on the interaction between IOD and ENSO. J Clim 19:1688–1705

    Article  Google Scholar 

  • Berry GJ, Reeder MJ, Jakob C (2012) Coherent synoptic disturbances in the Australian monsoon. J Clim 25:8409–8421

    Article  Google Scholar 

  • Bony S, Dufresne JL, Treut HL, Morcrette JJ, Senior C (2004) On dynamic and thermodynamic components of cloud changes. Clim Dyn 22:71–86. doi:10.1007/s00382-003-0369-6

    Article  Google Scholar 

  • Brown JR, Colman RA, Moise AF, Smith IN (2013) The western Pacific monsoon in CMIP5 models: Model evaluation and projections. J Geophys Res 118:12458–12475

    Google Scholar 

  • Cai W, Cowan T, Sullivan A (2009a) Recent unprecedented skewness towards positive Indian Ocean Dipole occurrences and its impact on Australian rainfall. Geophys Res Lett 36:L11705. doi:10.1029/2009GL037604

    Article  Google Scholar 

  • Cai W, Sullivan A, Cowan T (2009b) Rainfall teleconnections with Indo-Pacific variability in the WCRP CMIP3 models. J. Climate 22:5046–5071

    Article  Google Scholar 

  • Cai W, Cowan T, Sullivan A (2009c) Climate change contributes to more frequent consecutive positive Indian Ocean Dipole events. Geophys Res Lett 36:L23704

    Article  Google Scholar 

  • Chan JCL, Li CY (2004) The East Asian winter monsoon, in East Asian Monsoon. In: Chang C-P (ed), World scientific series on meteorology of East Asia, vol. 2. World Scientific, pp 54–106

    Google Scholar 

  • Chadwick R, Boutle I, Martin G (2013) Spatial patterns of precipitation change in CMIP5: Why the rich don’t get richer in the tropics. J Clim 26:3803–3822

    Article  Google Scholar 

  • Chang CP (2004) East Asian Monsoon. World Scientific, 564 pp

    Google Scholar 

  • Chang CP, Krishnamurti TN (eds) (1987) Monsoon meteorology. Oxford University Press, Oxford, 544 pp

    Google Scholar 

  • Chang CP, Erickson JE, Lau KM (1979) Northeasterly cold surges and near- equatorial disturbances over the winter MONES area during Dec. 1974. Part I: Synoptic aspects. Mon Wea Rev 107:812–829

    Article  Google Scholar 

  • Chang C-P, Ding Y, Lau N-C (eds) (2011) The global monsoon system: research and forecast. World Scientific, 594 pp

    Google Scholar 

  • Chen T-C, Yen M-C (1991) Intraseasonal variations of the tropical easterly jet during the 1979 northern summer. Tellus 43A:213–225

    Google Scholar 

  • Cherchi A, Alessandri A, Masina S, Navarra A (2011) Effects of increased CO2 levels on monsoons. Clim Dyn 37:83–101

    Google Scholar 

  • Christensen JH, Krishna Kumar K, Aldrian E, An S-I, Cavalcanti IFA, de Castro M, Dong W, Goswami P, Hall A, Kanyanga JK, Kitoh A, Kossin J, Lau N-C, Renwick J, Stephenson DB, Xie S-P, Zhou T (2013) Climate phenomena and their relevance for future regional climate change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

    Google Scholar 

  • Collins, M., Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver AJ, Wehner M (2013) Long-term climate change: projections, commitments and irreversibility. In: Stocker TF, Qin D., Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex Y, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

    Google Scholar 

  • Colman RA, Moise AF, Hanson LI (2011) Tropical Australian climate and the Australian monsoon assimulated by 23 CMIP3 models. J Geophys Res 116:D10116. doi:10.1029/2010JD015149

    Article  Google Scholar 

  • CSIRO and Bureau of Meteorology (2007) Climate Change in Australia: Technical Report, 140 pp., http://www.climatechangeinaustralia.gov.au

  • CSIRO and Bureau of Meteorology (2012) State of the climate 2012. 12 pp., http://www.csiro.au/Outcomes/Climate/Understanding/State-of-the-Climate.aspx

  • Davidson NE, McBride JL, McAvaney BJ (1983) The onset of the Australian monsoon during winter MONEX: synoptic aspects. Mon Weather Rev 111:496–516

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597

    Article  Google Scholar 

  • Ding YH (1994) Monsoons over China. Kluwer Academic Publisher, Dordrecht, Boston, London 419 pp

    Google Scholar 

  • Drosdowsky W (1996) Variability of the Australian Summer Monsoon at Darwin: 1957–1992. J. Climate 9:85–96

    Article  Google Scholar 

  • Drosdowsky W, Chambers LE (2001) Near global sea surface temperature anomalies as predictors of Australian seasonal rainfall. J. Climate 14:1677–1687

    Article  Google Scholar 

  • Drosdowsky W, Wheeler MC (2014) Predicting the onset of the north Australian wet season with the POAMA dynamical prediction system. Wea Forecast 29:150–161

    Article  Google Scholar 

  • Flato G, Marotzke J, Abiodun B, Braconnot P, Chou SC, Collins W, Cox P, Driouech F, Emori S, Eyring V, Forest C, Gleckler P, Guilyardi E, Jakob C, Kattsov V, Reason C, Rummukainen M (2013) Evaluation of climate models. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Doschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change (2013) The physical science basis. Contribution of Working Group I to the Fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 741–882

    Google Scholar 

  • Frederiksen Carsten S, Frederiksen Jorgen S (1996) A theoretical model of Australian Northwest Cloudband Disturbances and Southern Hemisphere Storm Tracks: The Role of SST Anomalies. J Atmos Sci 53:1410–1432

    Article  Google Scholar 

  • Guan Z, Ashok K, Yamagata T (2003) Summertime response of the tropical atmosphere to the Indian Ocean Dipole sea surface temperature anomalies. J. Meteo. Soci. Jpn 81:533–561

    Article  Google Scholar 

  • Guilyardi E, Wittenberg A, Fedorov A, Collins M, Wang C, Capotondi A, Van Oldenborgh G, Stockdale T (2009) Understanding El Nin˜o in ocean—atmosphere general circulation models. Bull Am Meteorol Soc 90:325–340

    Article  Google Scholar 

  • Hendon HH, Liebmann B (1990) A composite study of onset of the Australian summer monsoon. J Atmos Sci 47:2227–2240

    Article  Google Scholar 

  • Hendon HH, Zhang C, Glick JD (1999) Interannual variation of the Madden–Julian oscillation during austral summer. J. Climate 12:2538–2550

    Article  Google Scholar 

  • Hendon HH, Lim E, Wheeler MC (2011) Seasonal prediction of Australian summer monsoon rainfall. In: Chang C-P, Ding YH, Lau N-C, Johnson N-C, Wang B, Yasunari T (eds) The global monsoon system: research and forecast, (2nd edn). World Scientific Series on Asia-Pacific Weather and Climate, vol 5, pp 73–84

    Google Scholar 

  • Holland Greg J (1986) Interannual variability of the Australian Summer Monsoon at Darwin: 1952–82. Mon Wea Rev 114:594–604

    Article  Google Scholar 

  • Hoskins B (2012) The potential for skill across the range of the seamless weather climate prediction problem: a stimulus for our science. Q J Roy Meteorol Soc 139:573–584

    Article  Google Scholar 

  • Hsu PC, Li T, Luo JJ, Murakami H, Kitoh A, Zhao M (2012) Increase of global monsoon area and precipitation under global warming: a robust signal? Geophys Res Lett 39:L0670

    Google Scholar 

  • Hudson D, Alves O, Hendon HH, Marshall AG (2011) Bridging the gap between weather and seasonal forecasting: intraseasonal forecasting for Australia. Q J Roy Meteorol Soc 137:673–689. doi:10.1002/qj.769

    Article  Google Scholar 

  • Hung C, Yanai M (2004) Factors contributing to the onset of the Australian summer monsoon. Q J Roy Meteor Soc 130(597):739–758

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2007) Climate Change 2007: the physical science basis. Contribution of Working Group I to the Fourth assessment report of the IPCC. In: Solomon S et al (eds) Cambridge Univ. Press, Cambridge, UK

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2013) Climate Change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the IPCC. In: Stocker et al (eds) Cambridge Univ. Press, Cambridge, UK

    Google Scholar 

  • Irving DB, Whetton P, Moise AF (2012) Climate projections for Australia: a first glance at CMIP5. Aust Meteorol Oceanogr J 62:211–225

    Article  Google Scholar 

  • Jones DA, Wang W, Fawcett R (2009) High-quality spatial climate data-sets for Australia. Aust Meteorol Oceanogr J 58:233–248

    Google Scholar 

  • Jourdain NC, Sen Gupta A, Taschetto AS, Ummenhofer CC, Moise AF, Ashok K (2013) The Indo-Australian monsoon and its relationship to ENSO and IOD in reanalysis data and the CMIP3/CMIP5 simulations. Clim Dyn 41:3073–3102

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, IredellM Saha S, WhiteG Woollen J et al (1996) TheNCEP/NCAR 40 year reanalysis project. Bull Am Meteorol Soc 77:437–472

    Article  Google Scholar 

  • Kawamura R, Fukuta Y, Ueda H, Matsuura T, Iizuka S (2002) A mechanism of the onset of the Australian summer monsoon. J Geophys Res 107:D14. doi:10.1029/2001JD001070

    Article  Google Scholar 

  • Kennedy JJ, Rayner NA, Smith RO, Saunby M, Parker DE (2011) Reassessing biases and other uncertainties in sea-surface temperature observations measured in situ since 1850 part 2: biases and homogenisation. J Geophys Res 116:D14104. doi:10.1029/2010JD015220

  • Kitoh A, Endo H, Krishna Kumar K, Cavalcanti IFA, Goswami P, Zhou T (2013) Monsoons in a changing world regional perspective in a global context. J Geophys Res Atmos 118. doi:10.1002/jgrd.50258

    Google Scholar 

  • Klingaman N, Woolnough S, Syktus J (2012) On the drivers of inter-annual and decadal rainfall variability in Queensland, Australia. Int J Climatol. ISSN 0899-8418 doi:10.1002/joc.3593

    Google Scholar 

  • Kripalani RH, Oh JH, Kulkarni A, Sabade SS, Chaudhari HS (2007) South Asian summer monsoon precipitation variability: Coupled climate model simulations and projections under IPCC AR4. Theor Appl Climatol 90:133–159

    Article  Google Scholar 

  • Lau WKM, Waliser DE (eds) (2005) Intraseasonal variability of the atmosphere-ocean climate system. Springer, Heidelberg, p 474

    Google Scholar 

  • Lau WKM, waliser de (eds) (2011) intraseasonal variability of the atmosphere-ocean climate system, 2nd edn. Springer, Heidelberg, p 613

    Google Scholar 

  • Lee J-Y, Wang B (2014) Future change of global monsoon in the CMIP5, Clim Dyn 42:101–119

    Google Scholar 

  • Lee J-Y, Wang B (2012) Future change of global monsoon in the CMIP5. Clim Dyn 42:101–119, doi: 10.1007/s00382-012-1564-0

    Google Scholar 

  • Li J, Feng J, Li Y (2012) A possible cause of decreasing summer rainfall in northeast Australia Int J Climatol 32: 995–1005, doi:10.1002/joc.2328

    Google Scholar 

  • Li J, Zeng Q (2003) A new monsoon index and the geographical distribution of the global monsoons. Adv Atmos Sci 20:299–302

    Article  Google Scholar 

  • Lin Z, Li Y (2012) Remote influence of the tropical Atlantic on the variability and trend in north west Australia summer rainfall. J Clim 25:2408–2420

    Article  Google Scholar 

  • Li X-F, Yu J, Li Y (2013) Recent summer rainfall increase and surface cooling over Northern Australia since the Late 1970s: a response to warming in the tropical western pacific. J Clim 26(18):7221–7239

    Article  Google Scholar 

  • Lin J-L et al (2008) Subseasonal variability associated with asian summer monsoon simulated by14 IPCC AR4 Coupled GCMs. J. Clim 21:4541–4567

    Article  Google Scholar 

  • Lo F, Wheeler MC, Meinke H, Donald A (2007) Probabilistic forecasts of the onset of the north Australian wet season. Mon Wea Rev 135:3506–3520

    Article  Google Scholar 

  • Luo Jing-Jia, Zhang Ruochao, Behera Swadhin K, Masumoto Yukio, Jin Fei-Fei, Lukas Roger, Yamagata Toshio (2010) Interaction between El Niño and Extreme Indian Ocean Dipole. J Clim 23:726–742

    Article  Google Scholar 

  • Madden RA, Julian PR (1971) Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J Atmos Sci 28:702–708

    Article  Google Scholar 

  • Madden RA, Julian PR (1972) Description of global-scale circulation cells in the tropics with a 40–50 day period. J Atmos Sci 29:1109–1123

    Article  Google Scholar 

  • Marshall AG, Hudson D, Wheeler MC, Hendon HH, Alves O (2011) Assessing the simulation and prediction of rainfall associated with the MJO in the POAMA seasonal forecast system. Clim Dyn 37:2129–2141

    Article  Google Scholar 

  • Marshall AG, Hudson D, Wheeler M, Alves O, Hendon HH, Pook MJ, Risbey JS (2013) Intra-seasonal drivers of extreme heat over Australia in observations and POAMA-2. Clim Dyn. doi:10.1007/s00382-013-2016-1

    Google Scholar 

  • McBride JL, Nicholls N (1983) Seasonal relationships between Australian rainfall and the Southern Oscillation. Mon Wea Rev 111:1998–2004

    Article  Google Scholar 

  • Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007) The WCRP CMIP3 multimodel dataset. Bull Amer Meteor Soc, 88(9):1383–1394

    Google Scholar 

  • Moise AF, Colman RA, Zhang H, and Participating CMIP2 modeling groups (2005) Coupled Model Simulations of Current Australian Surface Climate and Its Changes under Greenhouse Warming: An Analysis of 18 CMIP2 Models, Australian Met Mag, 54, 4

    Google Scholar 

  • Moise AF, Colman RA, Brown JR (2012) Behind uncertainties in projections of Australian tropical climate: Analysis of 19 CMIP3 models. J Geophys Res 117:D10103. doi:10.1029/2011JD017365

    Article  Google Scholar 

  • Moron V, Robertson AW, Boer R (2009) Spatial coherence and seasonal predictability of monsoon onset over Indonesia. J Clim 22:840–850

    Article  Google Scholar 

  • Nicholls N (1981) Air-sea interaction and the possibility of long-range weather prediction in the Indonesian Archipelago. Mon Wea Rev 109:2435–2443

    Article  Google Scholar 

  • Nicholls N, McBride JL, Ormerod RJ (1982) On predicting the onset of the Australian west season at Darwin. Mon Wea Rev 110:14–17

    Article  Google Scholar 

  • Peatman SC, Mattews AJ, Stevens DP (2013) Propagation of the Madden–Julian Oscillation through the Maritime Continent and scale interaction with the diurnal cycle of precipitation. Q J R Meteorol Soc. doi:10.1002/qj.2161

    Google Scholar 

  • Pope M, Jakob C, Reeder MJ (2009) Regimes of the North Australian wet season. J Clim 22:6699–6715

    Article  Google Scholar 

  • Power SB, Kociuba G (2011) What caused the observed twentieth-century weakening of the walker circulation? J Clim 24:6501–6514

    Article  Google Scholar 

  • Power SB, Delage F, Colman R, Moise A (2012) Consensus on 21st century rainfall projections in climate models more widespread than previously thought. J Clim 25:3792–3809. doi:10.1175/JCLID-11-00354.1

    Article  Google Scholar 

  • Randall DA, Wood RA, Bony S, Colman R, Fichefet T, Fyfe J, Kattsov V et al (2007) Cilmate models and their evaluation. In: Climate change 2007: the physical science basis. Contribution of working Group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York

    Google Scholar 

  • Rauniyar SP, Walsh KJE (2011) Scale interaction of the diurnal cycle of rainfall over the Maritime Continent and Australia: Influence of the MJO. J Clim 24:325–348

    Article  Google Scholar 

  • Risbey JS, Pook MJ, McIntosh PC, Wheeler MC, Hendon HH (2009) On the remote drivers of rainfall variability in Australia. Mon Weather Rev 137:3233–3253

    Article  Google Scholar 

  • Rienecker MM, Suarez MJ, Gelaro R, Todling R, Bacmeister J, Liu E, Bosilovich MG et al (2011) MERRA: NASA’s modern-era retrospective analysis for research and applications. J Clim 24(14):3624–3648

    Article  Google Scholar 

  • Rotstayn LD, Cai WJ, Dix MR, Farquhar GD, Feng Y, Ginoux P, Herzog M, Ito A, Penner JE, Roderick ML, Wang M (2007) Have Australian rainfall and cloudiness increased due to the remote effects of Asian anthropogenic aerosols? J Geophys Res Atmos 112 (D9, D09202). doi:10.1029/2006JD007712

  • Rotstayn LD, Jeffrey SJ, Collier MA, Dravitzki SM, Hirst AC, Syk-tus JI, Wong KK (2012) Aerosol- and greenhouse gas-induced changes in summer rainfall and circulation in the Australasian region: a study using single-forcing climate simulations. Atmos Chem Phys 12:6377–6404. doi:10.519/acp-12-6377-2012

    Article  CAS  Google Scholar 

  • Rudolf B, Becker A, Schneider U, Meyer-Christoffer A, Ziese M (2011) New Full Data Reanalysis Version 5 provides high-quality gridded monthly precipitation data. GEWEX News, Vol. 21, No. 2, 4–5

    Google Scholar 

  • Saha S (2010) The NCEP Climate Forecast System Reanalysis. Bull. Amer Meteor Soc 91(8), 1015–1057 (DOI: 10.1175/2010BAMS3001.1)

    Google Scholar 

  • Saji B, Goswami N, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363

    CAS  Google Scholar 

  • Shi G, Cai W, Cowan T, Ribbe J, Rotstayn L, Dix M (2008) Variability and trend of north west Australia rainfall: Observations and coupled climate modeling. J Clim 21:2938–2959

    Article  Google Scholar 

  • Smith I, Moise A, Katzfey J, Nguyen K, Colman R (2013) Regional-scale rainfall projections: Simulations for the New Guinea region using the CCAM model. J Geophys Res Atmos 118:1271–1280, doi:10.1002/jgrd.50139

    Google Scholar 

  • Smith I (2004) An assessment of recent trends in Australian rainfall. Aust Meteor Mag 53:163–173

    Google Scholar 

  • Smith IN, Wilson L, Suppiah R (2008) Characteristics of the northern Australian rainy season. J Clim 21:4298–4311

    Article  Google Scholar 

  • Smith IN, Moise AF, Colman RA (2012) Large-scale circulation features in the tropical western Pacific and their representation in climate models. J Geophys Res 117:D04109. doi:10.1029/2011JD016667

    Google Scholar 

  • Sumi A, Murakami T (1981) Large-scale aspects of the 1978–1979 winter circulation over greater MONEX region, Part I: monthly and season mean fields. J Meteor Soc Jpn 59:625–645

    Google Scholar 

  • Suppiah R, Collier MA, Rotstayn LD, Syktus JI, Wong KK (2013) Simulated and projected summer rainfall in tropical Australia: links to atmospheric circulation using the CSIRO Mk3.6 climate model. Aust Meteorol Oceanogr J 63:15–26

    Article  Google Scholar 

  • Taschetto AS, Haarsma RJ, Sen Gupta A, Ummenhofer CC, England MH (2010) Teleconnections associated with the intensification of the Australian monsoon during El Niño Modoki events. IOP Conf. Series: Earth and Environmental Science, 11: 012031, doi:10.1088/1755-1315/11/1/012031

    Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment esign. Bull Am Meteorol Soc 93(4):485–498

    Article  Google Scholar 

  • Trenberth KE, Stepaniak DP, Caron JM (2000) The global monsoon as seem through the divergent atmospheric circulation. J. Clim 13:3969–3993

    Article  Google Scholar 

  • Troup AJ (1961) Variations in upper tropospheric flow associated with the onset of the Australian summer monsoon. Indian J Meteorol Geophys 12:217–230

    Google Scholar 

  • Taschetto AS, Sen Gupta A, Hendon HH, Ummenhofer CC, England MH (2011) The contribution of Indian Ocean sea surface temperature anomalies on Australian summer rainfall during El Niño events. J Clim 24(14):3734–3747

    Article  Google Scholar 

  • Turner AG, Annamalai H (2012) Climate change and the South Asian summer monsoon. Nat Clim Change 2:587–595

    Article  Google Scholar 

  • Ueda H, Iwai A, Kuwako K, Hori ME (2006) Impact of anthropogenic forcing on the Asian summer monsoon as simulated by eight GCMs. Geophys Res Lett 33. doi:10.1029/2005gl025336

  • Ummenhofer CC, England MH, McIntosh PC, Meyers GA, Pook MJ, Risbey JS, Gupta AS, Taschetto AS (2009) What causes southeast Australia’s worst droughts? Geophys Res Lett 36:L04706. doi:10.1029/2008GL036801

    Article  Google Scholar 

  • Vecchi GA, Soden BJ (2007) Global warming and the weakening of the tropical circulation. J Clim 20:4316–4340. doi:10.1175/JCLI4258.1

    Article  Google Scholar 

  • Wang B (2006) The Asian monsoon. Springer, Heidelberg 787 pp

    Google Scholar 

  • Wang B, LinHo (2002) Rainy season of the Asian-Pacific summer monsoon. J Clim 15:386–398

    Article  Google Scholar 

  • Wang B, Ding QH (2008) Global monsoon: dominant mode of annual variation in the tropics. Dyn Atmos Oceans 44:165–183

    Article  CAS  Google Scholar 

  • Wang B, Kim HJ, Kikuchi K, Kitoh A (2011) Diagnostic metrics for evaluation of annual and diurnal cycles. Clim Dyn 37:941–955

    Article  Google Scholar 

  • Wang B, Liu J, Kim H-J, Webster PJ, Yim S-Y, Xiang B (2013) Northern Hemisphere summer monsoon intensified by mega-El Niño/southern oscillation and Atlantic multidecadal oscillation. PNAS 110(14):5347–5352. doi:10.1073/pnas.1219405110

    Article  CAS  Google Scholar 

  • Wang B, Zhang Y, Lu M-M (2004) Definition of South China Sea Monsoon Onset and Commencement of the East Asia Summer Monsoon. J Clim 17: 699–710

    Google Scholar 

  • Watterson IG (2012) Understanding and partitioning future climates for Australian regions from CMIP3 using ocean warming indices. Clim Change 111:903–922

    Article  Google Scholar 

  • Watterson IG (2013) Climate change simulated by full and mixed-layer ocean versions of CSIRO Mk3.5 and mk3.0: the Asia-Pacific region. Asia Pac J Atmos Sci 49:287–300

    Article  Google Scholar 

  • WCRP (2005) The world climate research programme strategic framework 2005–15. WCRP-123, WMO/TD-No.1291. World Meteorological Organization: Geneva

    Google Scholar 

  • Wheeler M, McBride JL (2005) Australian-indonesian monsoon region. In: Lau KM, Waliser DE (eds) Intraseasonal variability of the atmosphere-ocean climate system. Springer, Heidelberg

    Google Scholar 

  • Wheeler M, McBride JL (2011) Australasian monsoon. In: Lau WKM, Waliser DE (eds) Intraseasonal variability in the atmosphere-ocean climate system. Springer, Berlin, 646 pp

    Google Scholar 

  • Wheeler MC, Hendon HH (2004) An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon Wea Rev 132:1917–1932

    Article  Google Scholar 

  • Wheeler MC, Hendon HH, Cleland S, Meinke H, Donald A (2009) Impacts of the Madden–Julian oscillation on Australian rainfall and circulation. J Clim 22:1482–1498

    Article  Google Scholar 

  • Xavier PK (2012) Intraseasonal convective moistening in CMIP3 models. J Clim 25:2569–2577

    Article  Google Scholar 

  • Xie P, Arkin PA (1997) Global precipitation: a 17 year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteorol Soc 78(11):2539–2558

    Article  Google Scholar 

  • Yeh S-W, Kug J-S, Dewitte B, Kwon M-H, Kirtman BP, Jin F-F (2009) El Niño in a changing climate. Nature 461:511–514

    Article  CAS  Google Scholar 

  • Yim S-Y, Wang B, Liu J, Wu Z (2014) Regional monsoon indices, Climate Dynamics (in press)

    Google Scholar 

  • Zeng X, Lu E (2004) Globally unified monsoon onset and retreat indexes. J Clim 17:2241–2248

    Article  Google Scholar 

  • Zhang H (2010) diagnosing Australia-Asian monsoon onset/retreat using large-scale wind and moisture indices. Clim Dyn 35:601–618

    Article  Google Scholar 

  • Zhang CJ, Zhang H (2010) Potential impacts of east Asian winter monsoon on climate variability and predictability in the Australian summer monsoon region. Theor Appl Climatol. doi:10.1007/s00704-009-0246-2

    Google Scholar 

  • Zhang H, Henderson-Sellers A, Irannejad P, Sharmeen S, Phillips T, McGuffie K (2002) Land-surface modelling and climate simulations: results over the Australian region from sixteen AMIP2 models. Bureau of Meteorology Research Centre Report, No. 89

    Google Scholar 

  • Zhang H, Liang P, Moise A, Hanson L (2012) Diagnosing potential changes in Asian summer monsoon onset and duration in IPCC AR4 model simulations using moisture and wind indices. Clim Dyn 39:2465–2486

    Article  Google Scholar 

  • Zhang H, Moise A, Liang P, Hanson L (2013) The response of summer monsoon onset/retreat in Sumatra-Java and tropical Australia region to global warming in CMIP3 models. Clim Dyn 40:377–399

    Article  Google Scholar 

  • Zhang H, Dong G, Moise A, Colman R, Hanson L, Smith I, Liang P, Ye H (2014) The onset, duration and intensity of the Australian monsoon in 26 CMIP5 models, Climate Dynamics (to be submitted)

    Google Scholar 

Download references

Acknowledgments

The authors thank Drs. Rob Colman and Ian Smith for their very thoughtful and detailed comments and suggestions during the internal review process. We also thank Dr. Wenju Cai of the CSIRO Marine and Atmospheric Research for encouraging us to contribute this chapter. Part of the research was conducted with the support of the Australian Climate Change Science Program (ACCSP) Monsoon Project. Dr. F. Delage of CAWCR provided Fig. 5.11. Collaborations with Dr. Ping Liang and Mr. Guangtao Dong of Shanghai Regional Climate Centre, Dr. Ying Xu, and Dr. Cunjie Zhang of the National Climate Center of China Meteorological Administration are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurel Moise .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhang, H., Moise, A. (2016). The Australian Summer Monsoon in Current and Future Climate. In: de Carvalho, L., Jones, C. (eds) The Monsoons and Climate Change. Springer Climate. Springer, Cham. https://doi.org/10.1007/978-3-319-21650-8_5

Download citation

Keywords

Publish with us

Policies and ethics