Skip to main content

Advertisement

Springer Nature Link
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Advances in Atmospheric Sciences
  3. Article

Abrupt summer warming and changes in temperature extremes over Northeast Asia since the mid-1990s: Drivers and physical processes

  • Open access
  • Published: 21 July 2016
  • Volume 33, pages 1005–1023, (2016)
  • Cite this article

You have full access to this open access article

Download PDF
Advances in Atmospheric Sciences Aims and scope Submit manuscript
Abrupt summer warming and changes in temperature extremes over Northeast Asia since the mid-1990s: Drivers and physical processes
Download PDF
  • Buwen Dong1,
  • Rowan T. Sutton1,
  • Wei Chen2,
  • Xiaodong Liu3,
  • Riyu Lu2 &
  • …
  • Ying Sun4 
  • 1882 Accesses

  • 79 Citations

  • 61 Altmetric

  • 8 Mentions

  • Explore all metrics

Abstract

This study investigated the drivers and physical processes for the abrupt decadal summer surface warming and increases in hot temperature extremes that occurred over Northeast Asia in the mid-1990s. Observations indicate an abrupt increase in summer mean surface air temperature (SAT) over Northeast Asia since the mid-1990s. Accompanying this abrupt surface warming, significant changes in some temperature extremes, characterized by increases in summer mean daily maximum temperature (Tmax), daily minimum temperature (Tmin), annual hottest day temperature (TXx), and annual warmest night temperature (TNx) were observed. There were also increases in the frequency of summer days (SU) and tropical nights (TR). Atmospheric general circulation model experiments forced by changes in sea surface temperature (SST)/sea ice extent (SIE), anthropogenic greenhouse gas (GHG) concentrations, and anthropogenic aerosol (AA) forcing, relative to the period 1964–93, reproduced the general patterns of observed summer mean SAT changes and associated changes in temperature extremes, although the abrupt decrease in precipitation since the mid-1990s was not simulated. Additional model experiments with different forcings indicated that changes in SST/SIE explained 76% of the area-averaged summer mean surface warming signal over Northeast Asia, while the direct impact of changes in GHG and AA explained the remaining 24% of the surface warming signal. Analysis of physical processes indicated that the direct impact of the changes in AA (through aerosol–radiation and aerosol–cloud interactions), mainly related to the reduction of AA precursor emissions over Europe, played a dominant role in the increase in TXx and a similarly important role as SST/SIE changes in the increase in the frequency of SU over Northeast Asia via AA-induced coupled atmosphere–land surface and cloud feedbacks, rather than through a direct impact of AA changes on cloud condensation nuclei. The modelling results also imply that the abrupt summer surface warming and increases in hot temperature extremes over Northeast Asia since the mid-1990s will probably sustain in the next few decades as GHG concentrations continue to increase and AA precursor emissions over both North America and Europe continue to decrease.

Article PDF

Download to read the full article text

Similar content being viewed by others

Understanding the rapid summer warming and changes in temperature extremes since the mid-1990s over Western Europe

Article Open access 05 May 2016

Decadal trends in surface solar radiation and cloud cover over the North Atlantic sector during the last four decades: drivers and physical processes

Article Open access 22 August 2022

Anthropogenic impacts on recent decadal change in temperature extremes over China: relative roles of greenhouse gases and anthropogenic aerosols

Article 06 July 2018

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Atmospheric Science
  • Climate Sciences
  • Climate-Change Impacts
  • Climate Change
  • Environmental Sciences
  • Meteorology
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  • Adler, R. F., and Coauthors, 2003. The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–Present). Journal of Hydrometeorology, 4, 1147–1167.

    Article  Google Scholar 

  • Andrews, T., 2014. Using an AGCM to diagnose historical effective radiative forcing and mechanisms of recent decadal climate change. J. Climate, 27, 1193–1209.

    Article  Google Scholar 

  • Bellouin, N., G. W. Mann, M. T. Woodhouse, C. Johnson, K. S. Carslaw, and M. Dalvi, 2013. Impact of the modal aerosol scheme GLOMAP-mode on aerosol forcing in the Hadley Centre Global Environmental Model. Atmospheric Chemistry and Physics, 13, 3027–3044, doi: 10.5194/acp-13-3027-2013.

    Article  Google Scholar 

  • Chen, M. Y., P. P. Xie, J. E. Janowiak, and P. A. Arkin, 2002. Global land precipitation: a 50-yr monthly analysis based on gauge observations. Journal of Hydrometeorology, 3, 249–266.

    Article  Google Scholar 

  • Chen, W., and R.Y. Lu, 2014. A decadal shift of summer surface air temperature over the Northeast Asia around the mid-1990s. Adv. Atmos. Sci., 31, 735–742, doi: 10.1007/s00376-013-3154-4.

    Article  Google Scholar 

  • Christidis, N., and Coauthors, 2013. A new HadGEM3-A-based system for attribution of weather and climate-related extreme events. J. Climate, 26, 2756–2783.

    Article  Google Scholar 

  • Cowan, T., and W. Cai, 2011: The impact of Asian and non-Asian anthropogenic aerosols on 20th century Asian summer monsoon. Geophys. Res. Lett., 38, L11703, doi: 10.1029/2011gl047268.

  • Dai, A. G., K. E. Trenberth, and T. R. Karl, 1999. Effects of clouds, soil moisture, precipitation, and water vapor on diurnal temperature range. J. Climate, 12, 2451–2473.

    Article  Google Scholar 

  • Ding, Y. H., Z. Y. Wang, and Y. Sun, 2008. Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part I: Observed evidences. International Journal of Climatology, 28, 1139–1161, doi: 10.1002/joc.1615.

    Google Scholar 

  • Ding, Y. H., Y. Sun, Z. Y. Wang, Y. X. Zhu, and Y. F. Song, 2009. Inter-decadal variation of the summer precipitation in China and its association with decreasing Asian summer monsoon Part II: Possible causes. International Journal of Climatology, 29, 1926–1944, doi: 10.1002/joc.1759.

    Article  Google Scholar 

  • Donat, M. G., and Coauthors, 2013. Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: the HadEX2 dataset. J. Geophys. Res., 118, 2098–2118, doi: 10.1002/jgrd.50150.

    Google Scholar 

  • Dong, B.-W., and R. Sutton, 2015. Dominant role of greenhouse gas forcing in the recovery of Sahel rainfall. Nature Climate Change, 5, 757–760, doi: 10.1038/nclimate2664.

    Article  Google Scholar 

  • Dong, B.-W., J. M. Gregory, and R. T. Sutton, 2009. Understanding land-sea warming contrast in response to increasing greenhouse gases. Part I: Transient adjustment. J. Climate, 22, 3079–3097.

    Article  Google Scholar 

  • Dong, B.-W., R. T. Sutton, E. J. Highwood, and L. J. Wilcox, 2016a. Preferred response of the East Asian summer monsoon to local and non-local anthropogenic sulphur dioxide emissions. Climate Dyn., 46, 1733–1751, doi: 10.1007/s00382-015-2671-5.

    Article  Google Scholar 

  • Dong, B.-W., R. T. Sutton, and L. Shaffrey, 2016b: Understanding the rapid summer warming and changes in temperature extremes since the mid-1990s over Western Europe. Climate Dyn., doi: 10.1007/s00382–016-3158-8.

    Google Scholar 

  • Feng, S., and Q. Hu, 2008: How the North Atlantic Multidecadal Oscillation may have influenced the Indian summer monsoon during the past two millennia. Geophys. Res. Lett., 35, L01707, doi: 10.1029/2007GL032484.

  • Folini, D., and M. Wild, 2015. The effect of aerosols and sea surface temperature on China’s climate in the late twentieth century from ensembles of global climate simulations. J. Geophys. Res., 120, 2261–2279, doi: 10.1002/2014JD022851.

    Google Scholar 

  • Gao, L. H., Z.W. Yan, and X.W. Quan, 2014a. Observed and SSTforced multidecadal variability in global land surface air temperature. Climate Dyn., 44, 359–369, doi: 10.1007/s00382-014-2121-9.

    Article  Google Scholar 

  • Gao, Z. T., Z.-Z. Hu, B. Jha, S. Yang, J. S. Zhu, B. Z. Shen, and R. J. Zhang, 2014b: Variability and predictability of Northeast China climate during 1948–2012. Climate Dyn., 43, 787–804, doi: 10.1007/s00382-013-1944-0.

    Article  Google Scholar 

  • Guo, L., E. J. Highwood, L. C. Shaffrey, and A. G. Turner, 2013. The effect of regional changes in anthropogenic aerosols on rainfall of the East Asian summer monsoon. Atmospheric Chemistry and Physics, 13, 1521–1534.

    Article  Google Scholar 

  • Han, T. T., H. P. Chen, and H. J. Wang, 2015. Recent changes in summer precipitation in Northeast China and the background circulation. International Journal of Climatology, 35, 4210–4219.

    Article  Google Scholar 

  • Hansen, J., R. Ruedy, M. Sato, and K. Lo, 2010: Global surface temperature change, Rev. Geophys., 48, RG4004, doi: 10.1029/2010RG000345.

  • Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2014. Updated high-resolution grids of monthly climatic observations–the CRU TS3.10 dataset. International Journal of Climatology, 34, 623–642, doi: 10.1002/joc.3711.

    Article  Google Scholar 

  • Hewitt, H. T., D. Copsey, I. D. Culverwell, C. M. Harris, R. S. R. Hill, A. B. Keen, A. J. McLaren, and E. C. Hunke, 2011. Design and implementation of the infrastructure of HadGEM3: The next-generation Met Office climate modelling system. Geoscientific Model Development, 4, 223–253.

    Article  Google Scholar 

  • Huang, R. H., Y. Liu, and T. Feng, 2013. Interdecadal change of summer precipitation over Eastern China around the late-1990s and associated circulation anomalies, internal dynamical causes. Chinese Science Bulletin, 58, 1339–1349.

    Article  Google Scholar 

  • Kalnay, E., and Coauthors, 1996. The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–472.

    Article  Google Scholar 

  • Kamae, Y., H. Shiogama, M. Watanabe, and M. Kimoto, 2014a. Attributing the increase in Northern Hemisphere hot summers since the late 20th century. Geophys. Res. Lett., 41, 5192–5199.

    Article  Google Scholar 

  • Kamae, Y., M. Watanabe, M. Kimoto, and H. Shiogama, 2014b. Summertime land–sea thermal contrast and atmospheric circulation over East Asia in a warming climate—Part II: Importance of CO2-induced continental warming. Climate Dyn., 43, 2569–2583, doi: 10.1007/s00382-014-2146-0.

    Article  Google Scholar 

  • Kosaka, Y., and S. P. Xie, 2013. Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501, 403–407.

    Article  Google Scholar 

  • Kühn, T., and Coauthors, 2014. Climate impacts of changing aerosol emissions since 1996. Geophys. Res. Lett., 41, 4711–4718, doi: 10.1002/2014GL060349.

    Google Scholar 

  • Kwon, M., J.-G. Jhun, and K.-J. Ha, 2007: Decadal change in East Asian summer monsoon circulation in the mid-1990s. Geophys. Res. Lett., 34, L21706, doi: 10.1029/2007GL031977.

  • Lamarque, J. F., and Coauthors, 2010. Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application. Atmospheric Chemistry and Physics, 10, 7017–7039.

    Article  Google Scholar 

  • Legates, D. R., and C. J. Willmott, 1990a. Mean seasonal and spatial variability in global surface air temperature. Theor. Appl. Climatol., 41, 11–21.

    Article  Google Scholar 

  • Legates, D. R., and C. J. Willmott, 1990b. Mean seasonal and spatial variability in gauge-corrected, global precipitation. International Journal of Climatology, 10, 111–127.

    Article  Google Scholar 

  • Levine, R. C., and A. G. Turner, 2012. Dependence of Indian monsoon rainfall on moisture fluxes across the Arabian Sea and the impact of coupled model sea surface temperature biases. Climate Dyn., 38, 2167–2190, doi: 10.1007/s00382-011-1096-z.

    Article  Google Scholar 

  • Li, J., W. J. Dong, and Z. W. Yan, 2012. Changes of climate extremes of temperature and precipitation in summer in eastern China associated with changes in atmospheric circulation in East Asia during 1960–2008. Chinese Science Bulletin, 57, 1856–1861, doi: 10.1007/s11434-012-4989-2.

    Article  Google Scholar 

  • Liu, Y., and J. C. H. Chiang, 2012. Coordinated abrupt weakening of the Eurasian and North African Monsoons in the 1960s and links to extratropical North Atlantic cooling. J. Climate, 25, 3532–3548, doi: 10.1175/JCLI-D-11-00219.1.

    Article  Google Scholar 

  • Lu, Z., Q. Zhang, and D. G. Streets, 2011. Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996–2010. Atmospheric Chemistry and Physics, 11, 9839–9864, doi: 10.5194/acp-11-9839-2011.

    Article  Google Scholar 

  • Martin, G. M., S. F. Milton, C. A. Senior, M. E. Brooks, S. Ineson, T. Reichler, and J. Kim, 2010. Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. J. Climate, 23, 5933–5957, doi: 10.1175/2010JCLI3541.1.

    Article  Google Scholar 

  • Mitchell, J. F. B., C. A. Wilson, and W. M. Cunnington, 1987. On CO2 climate sensitivity and model dependence of results. Quart. J. Roy. Meteor. Soc., 113, 293–322.

    Article  Google Scholar 

  • Mueller, B., and S. I. Seneviratne, 2012. Hot days induced by precipitation deficits at the global scale. Proceedings of the National Academy of Sciences of the United States of America, 109, 12398–12403, doi: 10.1073/pnas.1204330109.

    Article  Google Scholar 

  • Nabat, P., S. Somot, M. Mallet, A. Sanchez-Lorenzo, and M. Wild, 2014. Contribution of anthropogenic sulfate aerosols to the changing Euro-Mediterranean climate since 1980. Geophys. Res. Lett., 41, 5605–5611, doi: 10.1002/2014GL060798.

    Article  Google Scholar 

  • Qi, L., and Y. Q. Wang, 2012. Changes in the observed trends in extreme temperatures over China around 1990. J. Climate, 25, 5208–5222.

    Article  Google Scholar 

  • Qian, C. C., J.-Y. Yu, and G. Chen, 2014: Decadal summer drought frequency in China: the increasing influence of the Atlantic Multi-decadal Oscillation. Environmental Research Letters, 9, 124004.

    Article  Google Scholar 

  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi: 10.1029/2002JD002670.

    Article  Google Scholar 

  • Ren, G. Y., G. L. Feng, and Z. W. Yan, 2010. Progresses in observation studies of climate extremes and changes in mainland China. Climatic and Environmental Research, 15, 337–353. (in Chinese with English abstract)

    Google Scholar 

  • Rosenfeld, D., U. Lohmann, G. B. Raga, C. D. O’Dowd, M. Kulmala, S. Fuzzi, A. Reissell, M. O. Andreae, 2008: Flood or drought: How do aerosols affect precipitation? Science, 321, 1309–1313 doi: 10.1126/science.1160606.

    Article  Google Scholar 

  • Schubert, S. D., H. L. Wang, R. D. Koster, M. J. Suarez, and P. Y. Groisman, 2014. Northern Eurasian heat waves and droughts. J. Climate, 27, 3169–3207.

    Article  Google Scholar 

  • Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, B. Orlowsky, and A. J. Teuling, 2010. Investigating soil moisture-climate interactions in a changing climate: a review. Earth-Science Reviews, 99, 125–161.

    Article  Google Scholar 

  • Seneviratne, S. I., M. G. Donat, B. Mueller, and L. V. Alexander, 2014. No pause in the increase of hot temperature extremes. Nature Climate Change, 4, 161–163, doi: 10.1038/nclimate2145.

    Article  Google Scholar 

  • Shen, X. J., B. H. Liu, G. D. Li, Z. F. Wu, Y. H. Jin, P. J. Yu, and D. W. Zhou, 2014. Spatiotemporal change of diurnal temperature range and its relationship with sunshine duration and precipitation in China. J. Geophys. Res., 119, 13163–13179, doi: 10.1002/2014JD022326.

    Google Scholar 

  • Smith, S. J., J. van Aardenne, Z. Klimont, R. J. Andres, A. Volke, and S. D. Arias, 2011. Anthropogenic sulfur dioxide emissions: 1850–2005. Atmospheric Chemistry and Physics, 11, 1101–1116, doi: 10.5194/acp-11-1101-2011.

    Article  Google Scholar 

  • Song, F. F., T. J. Zhou, and Y. Qian, 2014. Responses of East Asian summer monsoon to natural and anthropogenic forcings in the 17 latest CMIP5 models. Geophys. Res. Lett., 41, 596–603, doi: 10.1002/2013GL058705.

    Article  Google Scholar 

  • Sperber, K. R., H. Annamalai, I.-S. Kang, A. Kitoh, A. Moise, A. Turner, B. Wang, and T. Zhou, 2013. The Asian summer monsoon: an intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Climate Dyn., 41, 2711–2744, doi: 10.1007/s00382-012-1607-6.

    Google Scholar 

  • Steinman, B. A., M. E. Mann, and S. K. Miller, 2015. Atlantic and Pacific multidecadal oscillations and Northern Hemisphere temperatures. Science, 347, 988–991, doi: 10.1126/science.1257856.

    Article  Google Scholar 

  • Sun, Y., X. B. Zhang, F. W. Zwiers, L. C. Song, H. Wan, T. Hu, H. Yin, and G. Y. Ren, 2014. Rapid increase in the risk of extreme summer heat in Eastern China. Nature Climate Change, 4, 1082–1085, doi: 10.1038/nclimate2410.

    Article  Google Scholar 

  • Tang, Q. H., and G. Y. Leng, 2012: Damped summer warming accompanied with cloud cover increase over Eurasia from 1982 to 2009. Environmental Research Letters, 7, 014004, doi: 10.1088/1748-9326/7/1/014004.

    Article  Google Scholar 

  • Tang, Q. H., G. Y. Leng, and P. Y. Groisman, 2012. European hot summers associated with a reduction of cloudiness. J. Climate, 25, 3637–3644.

    Article  Google Scholar 

  • Trenberth, K. E., J. T. Fasullo, G. Branstator, and A. S. Phillips, 2014. Seasonal aspects of the recent pause in surface warming. Nature Climate Change, 4, 911–916, doi: 10.1038/nclimate2341.

    Article  Google Scholar 

  • Twomey, S., 1977. The influence of pollution on the shortwave albedo of clouds. Journal of Atmospheric Sciences, 34, 1149–1154.

    Article  Google Scholar 

  • Ueda, H., Y. Kamae, M. Hayasaki, A. Kitoh, S. Watanabe, Y. Miki, and A. Kumai, 2015: Combined effects of recent Pacific cooling and Indian Ocean warming on the Asian monsoon. Nature Communications, 6, 8854, doi: 10.1038/ncomms9854.

    Article  Google Scholar 

  • Urabe, Y., and S. Maeda, 2014. The relationship between Japan’s recent temperature and decadal variability. SOLA, 10, 176–179, doi: 10.2151/sola.2014-037.

    Article  Google Scholar 

  • Wang, H. J., and Coauthors, 2012. Extreme climate in China: Facts, simulation and projection. Meteor. Z., 21, 279–304.

    Article  Google Scholar 

  • Wang, T., H. J. Wang, O. H. Otterå, Y. Q. Gao, L. L. Suo, T. Furevik, and L. Yu, 2013. Anthropogenic agent implicated as a prime driver of shift in precipitation in eastern China in the late 1970s. Atmospheric Chemistry and Physics, 13, 12433–12450, doi: 10.5194/acpd-13-11997-2013.

    Article  Google Scholar 

  • Wei, K., and W. Chen, 2011. An abrupt increase in the summer high temperature extreme days across China in the mid- 1990s. Adv. Atmos. Sci., 28, 1023–1029.

    Article  Google Scholar 

  • Wen, Q. H., X. B. Zhang, Y. Xu, and B. Wang, 2013. Detecting human influence on extreme temperatures in China. Geophys. Res. Lett., 40, 1171–1176, doi: 10.1002/grl.50285.

    Article  Google Scholar 

  • Wilcox, L. J., B. Dong, R. T. Sutton, and E. J. Highwood, 2015. The 2014 hot, dry summer in northeast Asia. Bull. Amer. Metero. Soc., 96, S105–S110.

    Article  Google Scholar 

  • Yang, S. L., J. M. Feng, W. J. Dong, and J. M. Chou, 2014: Analyses of extreme climate events over China based on CMIP5 historical and future simulations. Adv. Atmos. Sci., 31, 1209–1220, doi: 10.1007/s00376-014-3119-2.

    Article  Google Scholar 

  • You, Q. L., J. Z. Min, Y. Jiao, M. Sillanpää, and S. C. Kang, 2015. Observed trend of diurnal temperature range in the Tibetan Plateau in recent decades. International Journal of Climatology, 36, 2633–2643, doi: 10.1002/joc.4517.

    Article  Google Scholar 

  • Zhang, L. X., and T. J. Zhou, 2015. Drought over East Asia: a review. J. Climate, 28, 3375–3399, doi: 10.1175/JCLI-D-14-00259.1.

    Article  Google Scholar 

  • Zhao, P., S. Yang, and R. C. Yu, 2010. Long-term changes in rainfall over eastern China and large-scale atmospheric circulation associated with recent global warming. J. Climate, 23, 1544–1562, doi: 10.1175/2009JCLI2660.1.

    Article  Google Scholar 

  • Zhao, P., P. Jones, L. J. Cao, Z. W. Yan, S. Y. Zha, Y. N. Zhu, Y. Yu, and G. L. Tang, 2014. Trend of surface air temperature in eastern China and associated large-scale climate variability over the last 100 years. J. Climate, 27, 4693–4703, doi: 10.1175/JCLI-D-13-00397.1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. National Centre for Atmospheric Science, Department of Meteorology, University of Reading, Reading, RG6 6BB, UK

    Buwen Dong & Rowan T. Sutton

  2. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China

    Wei Chen & Riyu Lu

  3. Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, 710061, China

    Xiaodong Liu

  4. National Climate Center, China Meteorological Administration, Beijing, 100081, China

    Ying Sun

Authors
  1. Buwen Dong
    View author publications

    Search author on:PubMed Google Scholar

  2. Rowan T. Sutton
    View author publications

    Search author on:PubMed Google Scholar

  3. Wei Chen
    View author publications

    Search author on:PubMed Google Scholar

  4. Xiaodong Liu
    View author publications

    Search author on:PubMed Google Scholar

  5. Riyu Lu
    View author publications

    Search author on:PubMed Google Scholar

  6. Ying Sun
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Buwen Dong.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, B., Sutton, R.T., Chen, W. et al. Abrupt summer warming and changes in temperature extremes over Northeast Asia since the mid-1990s: Drivers and physical processes. Adv. Atmos. Sci. 33, 1005–1023 (2016). https://doi.org/10.1007/s00376-016-5247-3

Download citation

  • Received: 15 December 2015

  • Revised: 29 April 2016

  • Accepted: 03 June 2016

  • Published: 21 July 2016

  • Issue date: September 2016

  • DOI: https://doi.org/10.1007/s00376-016-5247-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Key words

  • surface warming
  • temperature extremes
  • global climate model
  • anthropogenic greenhouse gas
  • anthropogenic aerosol
  • SST/SIE
  • Northeast Asia
  • mid-1990s
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

62.171.150.19

Not affiliated

Springer Nature

© 2025 Springer Nature