Skip to main content
Log in

Response of hurricane-type vortices to global warming as simulated by ARPEGE-Climat at high resolution

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Atlantic hurricanes and their sensitivity to anthropogenic warming are investigated using very high (0.5°×0.5° over the Atlantic domain) resolution global simulations. The ARPEGE-Climat variable resolution grid demonstrates its usefulness in regional climate studies since resolution can be multiplied by a factor of 2.5 over the domain of interest compared to a uniform grid, for a similar computer cost. The question of hurricane characteristics dependence on anthropogenic warming is tackled trough the implementation of a tracking method. Changes in the total number, as well as locations, of hurricanes appear to depend more on sea surface temperature (SST) spatial patterns anomaly than Atlantic mean intensity, essentially through the change in large scale vertical wind shear. A uniform SST anomaly forcing produces increased and eastward shifted systems while a spatially contrasted anomaly leads to a decrease. Comparison between cyclogenesis density calculated from tracking or large scale combined variables (as a modified Gray parameter) brings some confidence in the use of the latter to investigate low resolution simulations. Mean hurricane dynamical characteristics are weakly changed by the warming but precipitation core and latent heat flux are enhanced in all scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from €39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Ayrault F (1998) Environnement, structure et évolution des dépressions météorologiques: réalité climatologique et modèles types. Ph.D. thesis. Université Paul Sabatier Toulouse, France, pp 328. [Available from Université Paul Sabatier, 118 Route de Narbonne, 31062, Toulouse, France]

  • Ayrault F, Joly A (2000) Une nouvelle typologie des dépresssions météorologiques: classification des phases de maturation. Compte-Rendus à l’Académie des Sciences, Sciences de la Terre et des planètes 330:167–172

    Google Scholar 

  • Bengtsson L, Bottger H, Kanamitsu M (1982) Simulation of hurricane-type vortices in a general circulation model. Tellus 34:440–457

    Article  Google Scholar 

  • Bengtsson L, Botzet M, Esch M (1995) Hurricane-type vortices in a general circulation model. Tellus 47A:175–196

    Google Scholar 

  • Bougeault P (1985) A simple parameterization of the large-scale effects of cumulus convection. Mon Weather Rev 113:2108–2121

    Article  Google Scholar 

  • Broccoli A, Manabe S (1990) Can existing climate models be used to study anthropogenic changes in tropical cyclone climate? Geophys Res Lett 17:1917–1920

    Article  Google Scholar 

  • Camargo S, Zebiak S (2002) Improving the detection and tracking of tropical cyclones in atmospheric general circulation models. Weather Forcast 17:1152–1162

    Article  Google Scholar 

  • Courtier P, Geleyn JF (1988) A global numerical weather prediction model with variable resolution: application to a shallow water equation. Quart J R Meteor Soc 114:1321–1346

    Article  Google Scholar 

  • Courtier P, Freydier C, Geleyn JF, Rabier F, Rochas M (1991) The ARPEGE project at METEO-FRANCE. In: ECMWF seminar proceedings, reading, 9–13 Sept 1991, Volume II, pp 193–221

  • Déqué M (1999) Documentation ARPEGE-CLIMAT. Tech report Centre National de Recherches Météorologiques, Météo-France, Toulouse, France

  • Déqué M, Piédelièvre JP (1995) High resolution climate simulation over Europe. Clim Dyn 11:321–339

    Article  Google Scholar 

  • Déqué M, Dreveton C, Braun A, Cariolle D (1994) The ARPEGE/IFS atmospheric model: a contribution to the French community climate modelling. Clim Dyn 10:249–266

    Article  Google Scholar 

  • Déqué M, Marquet P, Jones R (1998) Simulation of climate change over Europ using a global variable resolution general circulation model. Clim Dyn 14:173–189

    Article  Google Scholar 

  • Douville H (2003) Assessing the influence of soil moisture on seasonal climate variability with AGCMS. J Clim 4:1044–1066

    Google Scholar 

  • Frank W (1977a) The structure and energetics of the tropical cyclone. I. Storm structure. Mon Weather Rev 105:1119–1135

    Article  Google Scholar 

  • Frank W (1977b) The structure and energetics of the tropical cyclone. II. Dynamics and energetics. Mon Weather Rev 105:1136–1150

    Article  Google Scholar 

  • Geleyn JF, Bazile E, Bougeault P, Déqué M, Ivanovici V, Joly A, Labbé L, Piédelièvre JP, Piriou JM, Royer JF (1995) Atmospheric parameterization schemes in Météo-France’s Arpege NWP model. In: Proceedings of the ECMWF seminar parametrization of sub-grid scale physical processes, 5–9 Sept 1994, ECMWF, Reading, pp 385–402

  • Goldenberg SB, Landsea CW, Mestas-Nuñez AM, Gray WM (2001) The recent increase in Atlantic hurricane activity: causes and implications. Science 293(5529):474–479

    Article  PubMed  Google Scholar 

  • Gray W (1975) Tropical cyclone genesis. Deptartmant of Atmospheric Science Paper, No. 234, Colorado State University, Fort Collins, CO, p 121

  • Haarsma R, Mitchell J, Senior C (1993) Tropical disturbances in a GCM. Clim Dyn 8:247–257

    Article  Google Scholar 

  • Henderson-Sellers A, Zhang H, Berz G, Emanuel K, Gray W, Landsea C, Holland G, Lighthill J, Shieh SL, Webster P, McGuffie K (1998) Tropical cyclones and global climate change: a post IPCC assessment. Bull Am Meteor Soc 79:19–38

    Article  Google Scholar 

  • Hodges K (1994) A general method for tracking analysis and its application to meteorological data. Mon Weather Rev 122:2573–2586

    Article  Google Scholar 

  • Houghton J, Ding Y, Griggs D, Noguer M, van der Linden P, Dai X, Maskell K, Johnson CA (eds) (2001) IPCC 2001: the scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 881

  • Johns T, Gregory J, Ingram W, Johnson C, Jones A, Mitchell J, Roberts D, Sexton D, Stevenson D, Tett S, Woodage M (2001) Anthropogenic climate change for 1860 to 2100 simulated with the HadCM3 model under updated emission scenarios. Technical Note 22, Hadley Centre, p 22

  • Landman WA, Seth A, Camargo SJ (2005) The effect of regional climate model domain choice on the simulation of tropical cyclone-like vortices in the Southwestern Indian Ocean. J Clim 18:1263–1274

    Article  Google Scholar 

  • Landsea C, Anderson C, Charles N, Clark G, Dunion J, Partagas J, Hungerford P, Neumann C, Zimmer M (2003) The Atlantic hurricane database re-analysis project: documentation for the 1851–1910 alterations and additions to the HURDAT database. Hurricanes and typhoons: past, present, and future. Murnane RJ, Liu K-B (eds), Columbia University Press pp 177–221

  • Lorant V, Royer J (2001) Sensitivity of equatorial convection to horizontal resolution in aqua-planet simulations with a variable-resolution GCM. Mon Weather Rev 129:2730–2745

    Article  Google Scholar 

  • Louis JF, Tiedtke M, Geleyn JF (1981) A short history of the operational PBL-parameterization at ECMWF. In: ECMWF workshop planetary boundary layer parameterization, 25–27 Nov 1981, ECMWF, Reading, UK, pp 59–80

  • Mahfouf JF, Manzi AO, Noilhan J, Giordani H, Déqué M (1995) The land surface scheme ISBA within the Météo-France climate model ARPEGE. Part I: implementation and preliminary results. J Clim 8:2039–2057

    Article  Google Scholar 

  • Manabe S, Holloway JL Jr, Stone H (1970) Tropical circulation in a time-integration of a global model of the atmosphere. J Atmos Sci 27:580–613

    Article  Google Scholar 

  • Masson V, Champeaux JL, Chauvin F, Meriguet C, Lacaze R (2003) A global database of land surface parameters at 1-km resolution in meteorological and climate models. J Clim 16:1261–1282

    Google Scholar 

  • McDonald RE, Bleaken DG, Cresswell DR, Pope VD, Senior CA (2005) Tropical storms: representation and diagnosis in climate models and the impacts of climate change. Clim Dyn 25:19–36

    Article  Google Scholar 

  • Morcrette JJ (1990) Impact of changes to the radiation transfer parameterizations plus cloud optical properties in the ECMWF model. Mon Weather Rev 118:847–873

    Article  Google Scholar 

  • Moustaoui M, Royer JF, Chauvin F (2002) African easterly wave activity in a variable resolution GCM. Clim Dyn 19:289–301

    Article  Google Scholar 

  • Noilhan J, Planton S (1989) A simple parameterization of land surface processes for meteorological models. Mon Weather Rev 117:536–549

    Article  Google Scholar 

  • Reynolds R, Smith T (1994) Improved global sea surface temperature analyses using optimum interpolation. J Clim 7:929–948

    Article  Google Scholar 

  • Ricard JL, Royer JF (1993) A statistical cloud scheme for use in an AGCM. Ann Geophys 11:1095–1115

    Google Scholar 

  • Royer JF, Chauvin F, Timbal B, Araspin P, Grimal D (1998) A GCM study of the impact of greenhouse gas increase on the frequency of occurrence of tropical cyclones. Clim Change 38:307–343

    Article  Google Scholar 

  • Royer JF, Cariolle D, Chauvin F, Déqué M, Douville H, Hu R, Planton S, Rascol A, Ricard J, y Mélia DS, Sevault F, Simon P, Somot S, Tyteca S, Terray L, Valcke S (2002) Simulation des changements climatiques au cours du 21-ème siècle incluant l’ozone stratosphérique. Computes rendus de l’ académie des sciences, série IIa. Géosciences 3343:147–154

    Article  Google Scholar 

  • Suji M, Noda A, Sato N (2002) Influence of the global warming on tropical cyclone climatology: an experiment with the JMA global model. J Meteor Soc Jpn 80:249–272

    Article  Google Scholar 

  • Tang B, Neelin J (2004) ENSO influence on Atlantic hurricanes via tropospheric warming. Geophys Res Lett 31:1–4

    Google Scholar 

  • Walsh K (1997) Objective detection of tropical cyclones in high-resolution analyses. Mon Weather Rev 125:1767–1779

    Article  Google Scholar 

  • Wu G, Lau NC (1992) A GCM simulation of the relationship between tropical-storm formation and ENSO. Mon Weather Rev 120:958–977

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Frank Ayrault and Alain Joly for their initial tracking software, as well as Bruno Joly for his help in installing and using it. Discussion with Antoine Lasserre-Bigorry at the beginning of the study was very helpful by its deep knowledge of tropical cyclone systems. The authors are also grateful to Virginie Lorant for his meticulous reading of the manuscript. We are also grateful to the three reviewers of the manuscript for their useful comments and suggestions. This work has been supported by a grant from the Department of Ecology and Sustainable Development through the French program “Gestion et Impact du Changement Climatique” (GICC). The work was more specifically undertaken in the frame of the project IMFREX. The tracks were plotted with an adaptation of a GraDs script found on the list server ([email protected]).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrice Chauvin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chauvin, F., Royer, JF. & Déqué, M. Response of hurricane-type vortices to global warming as simulated by ARPEGE-Climat at high resolution. Clim Dyn 27, 377–399 (2006). https://doi.org/10.1007/s00382-006-0135-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s00382-006-0135-7

Keywords