Abstract
Extra-tropical cyclones strongly influence weather and climate in mid-latitudes and any future changes may have large impacts on the local scale. In this study Northern Hemisphere storms are analysed in ensembles of time-slice experiments carried out with an atmosphere only model with present day and future anthropogenic emissions. The present day experiment is forced by observed sea-surface temperature and sea-ice. The sea-surface temperatures and sea-ice for the future experiment are derived by adding anomalies, from parallel but lower resolution coupled model experiments, to the observed data. The storms in the present day simulation compare fairly well with observations in all seasons but some errors remain. In the future simulations there is some evidence of a poleward shift in the storm tracks in some seasons and regions. There are fewer cyclones in the Northern Hemisphere in winter and spring. The northeast end of the North Atlantic storm track is shifted south in winter giving more storms and increased frequency of strong winds over the British Isles. This shift is related to an increase in baroclinicity and a southward shift of the jet that occurs as a response to a minimum in ocean warming in the central North Atlantic. An increase in the frequency of storms over the UK is likely to cause enhanced levels of wind and flood damage. These results concur with those from some other models, however, large uncertainties remain.














Similar content being viewed by others
Abbreviations
- MSLP:
-
Mean sea level pressure
- NAO:
-
North atlantic oscillation
- ENSO:
-
El Niño–southern oscillation
- SST:
-
Sea surface temperature
- BPF:
-
Band-pass filter
- TEKE:
-
Transient eddy kinetic energy
- TVT:
-
Transient northward heat flux
- EOF:
-
Empirical orthogonal function
References
Barnston AG, Chelliah M, Goldenberg SB (1997) Documentation of a highly ENSO-related SST region in the equatorial Pacific. Atmos Ocean 35:367–383
Bengtsson L, Hodges KI, Roeckner E (2006) Storm tracks and climate change. J Clim 19:3518–3543. doi:10.1175/JCLI3815.1
Bengtsson L, Hodges KI, Keenlyside N (2009) Will extratropical storms intensify in a warmer climate? J Clim 22:2276–2301. doi:10.1175/2008JCLI2678.1
Beniston M, Stephenson DB, Christensen OB, Ferro CAT, Frei C, Goyette S, Halsnaes K, Holt T, Jylhä K, Koffi B, Palutikof J, Schöll R, Semmler T, Woth KA (2007) Future extreme events in European climate: an exploration of regional climate model projections. Clim Change 81:71–95. doi:10.1007/s10584-006-9226-z
Blackmon ML (1976) A climatological spectral study of the 500 mb geopotential height of the northern hemisphere. J Atmos Sci 33:1607–1623. doi:10.1175/1520-0469(1976)033<1607:ACSSOT>2.0.CO;2
Carnell RE, Senior CA (1998) Changes in mid-latitude variability due to increasing greenhouse gases and sulphate aerosols. Clim Dynam 14:369–383. doi:10.1007/s003820050229
Carnell RE, Senior CA (2002) An investigation into the mechanisms of changes in mid-latitude mean sea level pressure as greenhouse gases are increased. Clim Dynam 18:533–543. doi:10.1007/s00382-001-0197-5
Carnell RE, Senior CA, Mitchell JFB (1996) An assessment of measures of storminess: simulated changes in northern hemisphere winter due to increasing CO2. Clim Dynam 12:467–476. doi:10.1007/s003820050121
Chang EKM (2009) Are band-pass variance statistics useful measures of storm track activity? Re-examining storm track variability associated with the NAO using multiple storm track measures. Clim Dynam 23:277–296. doi:10.1007/s00382-009-0532-9
Chang EKM, Fu Y (2002) Interdecadal variations in northern hemisphere winter storm track intensity. J Clim 15:642–658. doi:10.1175/1520-0442(2002)015<0642:IVINHW>2.0.CO;2
Christoph M, Ulbrich U, Speth P (1997) Midwinter suppression of northern hemisphere storm track activity in the real atmosphere and GCM experiments. J Atmos Sci 54:1589–1599. doi:10.1175/1520-0469(1997)054<1589:MSONHS>2.0.CO;2
Cusack S, Edwards JM, Kershaw R (1999) Estimating the subgrid variance of saturation, and its parametrization for use in a GCM cloud scheme. Q J Roy Meteorol Soc 125:3057–3076. doi:10.1256/smsqj.56012
Della Marta PM, Pinto JG (2009) Statistical uncertainty of changes in winter storms over the north Atlantic and Europe in an ensemble of transient climate simulations. Geophys Res Lett 36:L14703. doi:10.1029/2009GL038557
Finnis J, Holland MM, Serreze MC, Cassano JJ (2007) Response of northern hemisphere extratropical cyclone activity and associated precipitation to climate change, as represented by the Community Climate System Model. J Geophys Res 112: G04S42. doi:10.1029/2006JG000286
Fischer-Bruns I, von Storch H, Gonzáles-Rouco JF, Zorita E (2005) Modelling the variability of midlatitude storm activity on decadal to century time scales. Clim Dynam 25:461–476. doi:10.1007/s00382-005-0036-1
Fyfe JC (2003) Extratropical southern hemisphere cyclones: harbingers of climate change? J Clim 16:2802–2805. doi:10.1175/1520-0442(2003)016<2802:ESHCHO>2.0.CO;2
Gastineau G, Soden BJ (2009) Model projected changes of extreme wind events in response to global warming. Geophys Res Lett 36:L10810. doi:10.1029/2009GL037500
Geng Q, Sugi M (2003) Possible change of extratropical cyclone activity due to enhanced greenhouse gases and sulfate aerosols—study with a high-resolution AGCM. J Clim 16:2262–2274. doi:10.1175/1520-0442(2003)16<2262:PCOECA>2.0.CO;2
Gordon C, Cooper C, Senior CA, Banks H, Gregory JM, Johns TC, Mitchell JFB, Woods RA (2000) The simulation of SST, sea-ice extents and ocean heat transports in a version of the Hadley centre coupled model without flux adjustments. Clim Dynam 16:147–168. doi:10.1007/s003820050010
Graham NE, Diaz HF (2001) Evidence for intensification of north Pacific winter cyclones since 1948. Bull Amer Meteorol Soc 82:1869–1893. doi:10.1175/1520-0477(2001)082<1869:EFIONP>2.3.CO;2
Greeves CZ, Pope VD, Stratton RA (2007) Representation of northern hemisphere winter storm tracks in climate models. Clim Dynam 28:683–702. doi:10.1007/s00382-006-0205-x
Gregory JM (1999) Representation of the radiative effect of convective anvils. Hadley centre technical note 7. Met Office Hadley Centre, Exeter
Hall NMJ, Hoskins BJ, Valdes PJ, Senior CA (1994) Storm tracks in a high resolution GCM with doubled CO2. Q J R Meteorol Soc 120:1209–1230. doi:10.1256/smsqj.51904
Hodges KI (1994) A general method for tracking analysis and its application to meteorological data. Mon Weather Rev 122:2573–2586. doi:10.1175/1520-0493(1994)122<2573:AGMFTA>2.0.CO;2
Hodges KI (1995) Feature tracking on the unit sphere. Mon Weather Rev 12:3458–3465. doi:10.1175/1520-0493(1995)123<3458:FTOTUS>2.0.CO;2
Hodges KI (1996) Spherical nonparametric estimators applied to the UGAMP model integration for AMIP. Mon Weather Rev 124:2914–2932. doi:10.1175/1520-0493(1996)124<2914:SNEATT>2.0.CO;2
Hodges KI, Hoskins BJ, Boyle J, Thorncroft C (2003) A comparison of recent reanalysis datasets using objective feature tracking: storm tracks and tropical easterly waves. Mon Weather Rev 131:2012–2037. doi:10.1175/1520-0493(2003)131<2012:ACORRD>2.0.CO;2
Hoskins BJ, Hodges KI (2002) New perspectives on the northern hemisphere winter storm tracks. J Atmos Sci 59:1041–1061. doi:10.1175/1520-0469(2002)059<1041:NPOTNH>2.0.CO;2
Hoskins BJ, Valdes PJ (1990) On the existence of storm-tracks. J Atmos Sci 47:1854–1864. doi:10.1175/1520-0469(1990)047<1854:OTEOST>2.0.CO;2
Hurrell JW, van Loon H (1997) Decadal variations in climate associated with the north Atlantic oscillation. Clim Change 36:301–326. doi:10.1023/A:1005314315270
Inatsu M, Kimoto M (2005) Two types of interannual variability of the mid-winter storm-tracks and their relationship to global warming. SOLA 1:61–64. doi:10.2151/sola.2005-017
Johns TC, Gregory JM, Ingram WJ, Johnson CE, Jones A, Lowe JA, Mitchell JFB, Roberts DL, Sexton DMH, Stevenson DS, Tett SFB, Woodage MJ (2003) Anthropogenic climate change for 1860 to 2100 simulated with the HadCM3 model under updated emissions scenarios. Clim Dynam 20:583–612. doi:10.1007/s00382-002-0296-y
Jones RG, Noguer M, Hassell DC, Hudson D, Wilson SS, Jenkins GJ, Mitchell JFB (2004) Generating high resolution climate change scenarios using PRECIS. Met Office Hadley Centre, Exeter
Knippertz P, Ulbrich U, Speth P (2000) Changing cyclones and surface wind speeds over the North Atlantic and Europe in a transient GHG experiment. Clim Res 15:109–122. doi:10.3354/cr015109
König W, Sausen R, Sielmann F (1993) Objective identification of cyclones in GCM simulations. J Clim 6:2217–2231. doi:10.1175/1520-0442(1993)006<2217:OIOCIG>2.0.CO;2
Laîné A, Kageyama M, Salas-Mélia D, Ramstein G, Planton S, Denvil S, Tyteca S (2009) An energetics study of wintertime northern hemisphere storm tracks under 4 × CO2 conditions in two ocean–atmosphere coupled models. J Clim 22:819–839. doi:10.1175/2008JCLI2217.1
Lambert SJ (1995) The effect of enhanced greenhouse warming on winter cyclone frequencies and strengths. J Clim 8:1447–1452. doi:10.1175/1520-0442(1995)008<1447:TEOEGW>2.0.CO;2
Lambert SJ, Fyfe JC (2006) Changes in winter cyclone frequencies and strengths simulated in enhanced greenhouse warming experiments: results from the models participating in the IPCC diagnostic exercise. Clim Dynam 26:713–728. doi:10.1007/s00382-006-0110-3
Lambert SJ, Sheng J, Boyle J (2002) Winter cyclone frequencies in thirteen models participating in the Atmospheric Model Intercomparison Project (AMIP1). Clim Dynam 19:1–16. doi:10.1007/s00382-001-0206-8
Leckebusch G, Ulbrich U (2004) On the relationship between cyclones and extreme windstorm events over Europe under climate change. Glob Planet Change 44:181–193. doi:10.1016/j.gloplacha.2004.06.011
Leckebusch GC, Koffi B, Ulbrich U, Pinto JG, Spangehl T, Zacharias S (2006) Analysis of frequency and intensity of European winter storm events from a multi-model perspective, at synoptic and regional scales. Clim Res 31:59–74. doi:10.3354/cr031059
Leckebusch GC, Ulbrich U, Fröhlich L, Pinto JG (2007) Property loss potentials for European midlatitude storms in a changing climate. Geophys Res Lett 34:L05703. doi:10.1029/2006GL027663
Leckebusch GC, Weimer A, Pinto JG, Reyers M, Speth P (2008) Extreme wind storms over Europe in present and future climate: a cluster analysis approach. Mereorol Z 17:67–82. doi:10.1127/0941-2948/2008/0266
Lindzen RS, Farrell B (1980) Simple approximate result for the maximum growth rate of baroclinic instabilities. J Atmos Sci 37:1648–1654. doi:10.1175/1520-0469(1980)037<1648:ASARFT>2.0.CO;2
Lionello P, Boldrin U, Giorgi F (2008) Future changes in cyclone climatology over Europe as inferred from a regional climate simulation. Clim Dynam 30:657–671. doi:10.1007/s00382-007-0315-0
Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao Z-C (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental panel on climate change. Cambridge University Press, Cambridge
Murphy JM, Sexton DMH, Barnett DN, Jones GS, Webb MJ, Collins M, Stainforth DA (2004) Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature 430:768–772. doi:10.1038/nature02771
Murray RJ, Simmonds I (1991) A numerical scheme for tracking cyclone centres from digital data. Part 1: development and operation of the scheme. Aust Meteorol Mag 39:155–166
Nakićenović N, Alcamo J, Davis G, de Vries B, Fenhann J, Gaffin S, Gregory K, Grobler A, Jung TY, Kram T, La Rovere EL, Michaelis L, Mori S, Morita T, Pepper W, Pitcher H, Price L, Riahi K, Roehrl A, Rogner H-H, Sankovski A, Schlesinger M, Shukla P, Smith S, Swart R, van Rooijen S, Nadejda V, Dadi Z (2000) Special report on emissions scenarios. Cambridge, UK, p 599
Pinto JG, Spangehl T, Ulbrich U, Speth P (2005) Sensitivities of a cyclone detection and tracking algorithm: individual tracks and climatology. Meteorol Z 14:823–838. doi:10.1127/0941-2948/2005/0068
Pinto JG, Ulbrich U, Leckebusch GC, Spangehl T, Reyers M, Zacharias S (2007) Changes in storm track and cyclone activity in three SRES ensemble experiments with the ECHAM5/MPI-OM1 GCM. Clim Dynam 29:195–210. doi:10.1007/s00382-007-0230-4
Pope VD, Stratton RA (2002) The processes governing horizontal resolution sensitivity in a climate model. Clim Dynam 19:211–236. doi:10.1007/s00382-001-0222-8
Pope VD, Gallani ML, Rowntree PR, Stratton RA (2000) The impact of new physical parametrizations in the Hadley Centre climate model—HadAM3. Clim Dynam 16:123–146. doi:10.1007/s003820050009
Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of SST, sea ice and night marine air temperature since the late nineteenth century. J Geophys Res 108:D14. doi:10.1029/2002JD002670
Rogers JC (1997) North Atlantic storm track variability and its association to the north Atlantic oscillation and climate variability of northern Europe. J Clim 10:1635–1647. doi:10.1175/1520-0442(1997)010<1635:NASTVA>2.0.CO;2
Rowell DP (2005) A scenario of European climate change for the late 21st century: seasonal means and interannual variability. Clim Dynam 25:837–849. doi:10.1007/s00382-005-0068-6
Sickmöller M, Blender R, Fraedrich K (2000) Observed winter cyclone tracks in the northern hemisphere in re-analysed ECMWF data. Q J R Meteorol Soc 125:591–620. doi:10.1002/qj.49712656311
Teng H, Washington WM, Meehl GA (2008) Interannual variations and future change of wintertime extratropical cyclone activity over North America in CCSM3. Clim Dynam 30:673–686. doi:10.1007/s00382-007-0314-1
Ueno K (1993) Interannual variability of surface cyclone tracks, atmospheric circulation patterns and precipitation patterns, in winter. J Meteorol Soc Japan 71:655–671
Ulbrich UJ, Pinto JG, Kupfer H, Leckebusch GC, Spangehl T, Reyers M (2008) Changing northern hemisphere storm tracks in an ensemble of IPCC climate change simulations. J Clim 21:1669–1679. doi:10.1175/2007JCLI1992.1
Ulbrich U, Leckebusch GC, Pinto JG (2009) Extra-tropical cyclones in the present and future climate: a review. Theoret Appl Clim 96:117–131. doi:10.1007/s00704-008-0083-8
Uppala SM, Kållberg PW, Simmons AJ, Andrae U, da Costa Bechtold V, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hólm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, McNally AP, Mahfouf J-F, Morcrette J-J, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012. doi:10.1256/qj.04.176
Wallace JM, Lim G-H, Blackmon ML (1988) Relationship between cyclone tracks, anticyclone tracks and baroclinic waveguides. J Atmos Sci 45:439–462. doi:10.1175/1520-0469(1988)045<0439:RBCTAT>2.0.CO;2
Watterson IG (2006) The intensity of precipitation during extratropical cyclones in global warming simulations: a link to cyclone intensity? Tellus 58A:82–97. doi:10.1111/j.1600-0870.2006.00147.x
Weisse R, Von Storch H, Feser F (2005) Northeast Atlantic and north sea storminess as simulated by a regional climate model during 1958–2001 and comparison with observations. J Clim 18:465–479. doi:10.1175/JCLI-3281.1
Wilks DS (1997) Resampling hypothesis tests for autocorrelated fields. J Clim 10:65–82. doi:10.1175/1520-0442(1997)010<0065:RHTFAF>2.0.CO;2
Yin JH (2005) A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys Res Lett 32:L18701. doi:10.1029/2005GL023684
Zhang YZ, Wallace JM, Battisti DS (1997) ENSO-like interdecadal variability: 1900–1993. J Clim 10:1004–1020. doi:10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2
Acknowledgments
I thank Kevin Hodges for the use of his cyclone tracking program (TRACK) and his ERA40 track statistics; his help and advice on the use of TRACK; and his comments on an earlier draft on this paper. Thanks to S Brown for his advice and J Murphy and D Rowell for their comments on earlier versions of this manuscript. The ERA40 data (Uppala et al. 2005) were provided by ECMWF. The author would also like to thank the reviewers for their comments leading to an improved manuscript. This work was supported by the Joint DECC and Defra Integrated Climate Programme, DECC/Defra (GA01101).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
McDonald, R.E. Understanding the impact of climate change on Northern Hemisphere extra-tropical cyclones. Clim Dyn 37, 1399–1425 (2011). https://doi.org/10.1007/s00382-010-0916-x
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1007/s00382-010-0916-x

