Skip to main content
Log in

West African monsoon dynamics and precipitation: the competition between global SST warming and CO2 increase in CMIP5 idealized simulations

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Climate variability associated with the West African monsoon (WAM) has important environmental and socio-economic impacts in the region. However, state-of-the-art climate models still struggle in producing reliable climate predictions. An important cause of this low predictive skill is the sensitivity of climate models to different forcings. In this study, the mechanisms linking the WAM dynamics to the CO2 forcing are investigated, by comparing the effect of the CO2 direct radiative effect with its indirect effect mediated by the global sea surface warming. The July-to-September WAM variability is studied in climate simulations extracted from the Coupled Model Intercomparison Project Phase 5 archive, driven by prescribed sea surface temperature (SST). The individual roles of global SST warming and CO2 atmospheric concentration increase are investigated through idealized experiments simulating a 4 K warmer SST and a quadrupled CO2 concentration, respectively. Results show opposite and competing responses in the WAM dynamics and precipitation. A dry response (−0.6 mm/day) to the SST warming is simulated in the Sahel, with dryer conditions over western Sahel (−0.8 mm/day). Conversely, the CO2 increase produces wet conditions (+0.5 mm/day) in the Sahel, with the strongest response over central-eastern Sahel (+0.7 mm/day). The associated responses in the atmospheric dynamics are also analysed, showing that the SST warming affects the Sahelian precipitation through modifications in the global tropical atmospheric dynamics, reducing the importance of the regional drivers, while the CO2 increase reinforces the coupling between precipitation and regional dynamics. A general agreement in model responses demonstrates the robustness of the identified mechanisms linking the WAM dynamics to the CO2 direct and indirect forcing, and indicates that these primary mechanisms are captured by climate models. Results also suggest that the spread in future projections may be caused by unbalanced model responses to the CO2 direct and indirect forcing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from €39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Adler RF et al (2003) The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). J Hydrometeorol 4:1147–1167. doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2

    Article  Google Scholar 

  • Bader J, Latif M (2003) The impact of decadal-scale Indian Ocean sea surface temperature anomalies on Sahelian rainfall and the North Atlantic Oscillation. Geophys Res Lett 30:1–4. doi:10.1029/2003GL018426

    Article  Google Scholar 

  • Biasutti M (2013) Forced Sahel rainfall trends in the CMIP5 archive. J Geophys Res Atmos 118:1613–1623. doi:10.1002/jgrd.50206

    Article  Google Scholar 

  • Biasutti M, Sobel AH, Camargo SJ (2009) The role of the Sahara low in summertime Sahel rainfall variability and change in the CMIP3 models. J Clim 22:5755–5771. doi:10.1175/2009JCLI2969.1

    Article  Google Scholar 

  • Bony S, Bellon G, Klocke D, Sherwood S, Fermepin S, Denvil S (2013) Robust direct effect of carbon dioxide on tropical circulation and regional precipitation. Nat Geosci 6:447–451. doi:10.1038/ngeo1799

    Article  Google Scholar 

  • Caminade C, Terray L (2010) Twentieth century sahel rainfall variability as simulated by the ARPEGE AGCM, and future changes. Clim Dyn 35:75–94. doi:10.1007/s00382-009-0545-4

    Article  Google Scholar 

  • Chauvin F, Roehrig R, Lafore JP (2010) Intraseasonal variability of the Saharan heat low and its link with midlatitudes. J Clim 23:2544–2561. doi:10.1175/2010JCLI3093.1

    Article  Google Scholar 

  • Chen TC (2005) Maintenance of the midtropospheric North African summer circulation; Saharan high and African easterly jet. J Clim 18:2943–2962. doi:10.1175/JCLI3446.1

    Article  Google Scholar 

  • Cook KH (1999) Generation of the African easterly jet and its role in determining West African precipitation. J Clim 12:1165–1184. doi:10.1175/1520-0442(1999)012<1165:GOTAEJ>2.0.CO;2

    Article  Google Scholar 

  • Cook KH, Vizy EK (2006) Coupled model simulations of the West African monsoon system: twentieth- and twenty-first-century simulations. J Clim 19:3681–3703. doi:10.1175/JCLI3814.1

    Article  Google Scholar 

  • Diedhiou A, Janicot S, Viltard A, De Felice P, Laurent H (1999) Easterly wave regimes and associated convection over West Africa and tropical Atlantic: results from the NCEP/NCAR and ECMWF reanalyses. Clim Dyn 15:795–822. doi:10.1007/s003820050316

    Article  Google Scholar 

  • Evan AT, Flamant C, Lavaysse C, Kocha C, Saci A (2015) Water vapor-forced greenhouse warming over the Sahara desert and the recent recovery from the Sahelian drought. J Clim 28:108–123. doi:10.1175/JCLI-D-14-00039.1

    Article  Google Scholar 

  • Fink AH, Reiner A (2003) Spatiotemporal variability of the relation between African Easterly Waves and West African Squall Lines in 1998 and 1999. J Geophys Res 108:1–17. doi:10.1029/2002JD002816

    Article  Google Scholar 

  • Fontaine B, Philippon N (2000) Seasonal evolution of boundary layer heat content in the West African Monsoon from the Ncep/Ncar. Int J Climatol 20:1777–1790

    Article  Google Scholar 

  • Fontaine B, Janicot S, Moron V (1995) Rainfall anomaly patterns and wind field signals over West Africa in August (1958–1989). J Clim 8:1503–1510

    Article  Google Scholar 

  • Fontaine B, Garcia-Serrano J, Roucou P, Rodriguez-Fonseca B, Losada T, Chauvin F, Gervois S, Sijikumar S, Ruti P, Janicot S (2010) Impacts of warm and cold situations in the mediterranean basins on the West African monsoon: observed connection patterns (1979–2006) and climate simulations. Clim Dyn 35:95–114. doi:10.1007/s00382-009-0599-3

    Article  Google Scholar 

  • Fontaine B, Gaetani M, Ullmann A, Roucou P (2011) Time evolution of observed July–September sea surface temperature-Sahel climate teleconnection with removed quasi-global effect (1900–2008). J Geophys Res Atmos 116:1–17. doi:10.1029/2010JD014843

    Google Scholar 

  • Gaetani M, Fontaine B, Roucou P, Baldi M (2010) Influence of the Mediterranean Sea on the West African monsoon: intraseasonal variability in numerical simulations. J Geophys Res 115:1–17. doi:10.1029/2010JD014436

    Article  Google Scholar 

  • Garric G, Douville H, Déqué M (2002) Prospects for improved seasonal predictions of monsoon precipitation over Sahel. Int J Climatol 22:331–345. doi:10.1002/joc.736

    Article  Google Scholar 

  • Giannini A (2010) Mechanisms of climate change in the Semiarid African Sahel: the local view. J Clim 23:743–756. doi:10.1175/2009JCLI3123.1

    Article  Google Scholar 

  • Giannini A, Saravanan R, Chang P (2003) Oceanic forcing of Sahel rainfall on interannual to interdecadal time scales. Science 302:1027–1030. doi:10.1126/science.1089357

    Article  Google Scholar 

  • Haarsma RJ, Selten FM, Weber SL, Kliphuis M (2005) Sahel rainfall variability and response to greenhouse warming. Geophys Res Lett 32:1–4. doi:10.1029/2005GL023232

    Article  Google Scholar 

  • Held IM, Delworth TL, Lu J, Findell KL, Knutson TR (2005) Simulation of Sahel drought in the 20th and 21st centuries. Proc Natl Acad Sci USA 102:17891–17896. doi:10.1073/pnas.0509057102

    Article  Google Scholar 

  • Hoerling M, Hurrell J, Eischeid J, Phillips A (2006) Detection and attribution of twentieth-century northern and southern African rainfall change. J Clim 19:3989–4008. doi:10.1175/JCLI3842.1

    Article  Google Scholar 

  • IPCC (2014) Climate change 2014: synthesis report. In: Core Writing Team, Pachauri RK, Meyer LA (eds) Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, Switzerland

  • Issa Lélé M, Lamb PJ (2010) Variability of the intertropical front (ITF) and rainfall over the West African Sudan-Sahel Zone. J Clim 23:3984–4004. doi:10.1175/2010JCLI3277.1

    Article  Google Scholar 

  • Kandji ST, Verchot L, Mackensen J (2006) Climate change and variability in the Sahel region : impacts and adaptation strategies in the agricultural sector. UNEP & ICRAF

  • Lavaysse C, Flamant C, Janicot S, Parker DJ, Lafore JP, Sultan B, Pelon J (2009) Seasonal evolution of the West African heat low: a climatological perspective. Clim Dyn 33:313–330. doi:10.1007/s00382-009-0553-4

    Article  Google Scholar 

  • Lavaysse C, Flamant C, Janicot S, Knippertz P (2010a) Links between African easterly waves, midlatitude circulation and intraseasonal pulsations of the West African heat low. Q J R Meteorol Soc 136:141–158. doi:10.1002/qj.555

    Article  Google Scholar 

  • Lavaysse C, Flamant C, Janicot S (2010b) Regional-scale convection patterns during strong and weak phases of the Saharan heat low. Atmos Sci Lett 11:255–264. doi:10.1002/asl.284

    Article  Google Scholar 

  • Lavaysse C, Chaboureau JP, Flamant C (2011) Dust impact on the west african heat low in summertime. Q J R Meteorol Soc 137:1227–1240. doi:10.1002/qj.844

    Article  Google Scholar 

  • Losada T, Rodríguez-Fonseca B, Janicot S, Gervois S, Chauvin F, Ruti P (2010) A multi-model approach to the Atlantic Equatorial mode: impact on the West African monsoon. Clim Dyn 35:29–43. doi:10.1007/s00382-009-0625-5

    Article  Google Scholar 

  • Lu J, Delworth TL (2005) Oceanic forcing of the late 20th century Sahel drought. Geophys Res Lett 32:L22706. doi:10.1029/2005GL023316

    Article  Google Scholar 

  • Meehl GA, Covey C, Taylor KE, Delworth T, Stouffer RJ, Latif M, McAvaney B, Mitchell JFB (2007) THE WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394. doi:10.1175/BAMS-88-9-1383

    Article  Google Scholar 

  • Mohino E, Janicot S, Bader J (2011) Sahel rainfall and decadal to multi-decadal sea surface temperature variability. Clim Dyn 37:419–440. doi:10.1007/s00382-010-0867-2

    Article  Google Scholar 

  • Monerie PA, Fontaine B, Roucou P (2012) Expected future changes in the African monsoon between 2030 and 2070 using some CMIP3 and CMIP5 models under a medium-low RCP scenario. J Geophys Res Atmos 117:1–12. doi:10.1029/2012JD017510

    Article  Google Scholar 

  • Monerie P-A, Roucou P, Fontaine B (2013) Mid-century effects of climate change on African monsoon dynamics using the A1B emission scenario. Int J Climatol 33:881–896. doi:10.1002/joc.3476

    Article  Google Scholar 

  • Nicholson SE (2013) The West African Sahel: a review of recent studies on the rainfall regime and its interannual variability. ISRN Meteorol 2013:32. doi:10.1155/2013/453521

    Article  Google Scholar 

  • Nicholson SE, Some B, McCollum J, Nelkin E, Klotter D, Berte Y, Diallo BM, Gaye I, Kpabeba G, Ndiaye O, Noukpozounkou JN, Tanu MM, Thiam A, Toure AA, Traore AK (2003) Validation of TRMM and other rainfall estimates with a high-density gauge dataset for West Africa. Part I: validation of GPCC rainfall product and pre-TRMM satellite and blended products. J Appl Meteorol 42:1337–1354. doi:10.1175/1520-0450(2003)042<1337:VOTAOR>2.0.CO;2

    Article  Google Scholar 

  • Panthou G, Vischel T, Lebel T (2014) Recent trends in the regime of extreme rainfall in the Central Sahel. Int J Climatol 34:3998–4006. doi:10.1002/joc.3984

    Article  Google Scholar 

  • Riahi K, Rao S, Krey V, Cho C, Chirkov V, Fischer G, Kindermann G, Nakicenovic N, Rafaj P (2011) RCP 8.5-A scenario of comparatively high greenhouse gas emissions. Clim Change 109:33–57. doi:10.1007/s10584-011-0149-y

    Article  Google Scholar 

  • Rodríguez-Fonseca B, Mohino E, Mechoso CR, Caminade C, Biasutti M, Gaetani M, Garcia-Serrano J, Vizy EK, Cook K, Xue Y, Polo I, Losada T, Druyan L, Fontaine B, Bader J, Doblas-Reyes FJ, Goddard L, Janicot S, Arribas A, Lau W, Colman A, Vellinga M, Rowell DP, Kucharski F, Voldoire A (2015) Variability and predictability of West African droughts: a review on the role of sea surface temperature anomalies. J Clim 28:4034–4060. doi:10.1175/JCLI-D-14-00130.1

    Article  Google Scholar 

  • Roehrig R, Bouniol D, Guichard F, Hourdin FD, Redelsperger JL (2013) The present and future of the west african monsoon: a process-oriented assessment of CMIP5 simulations along the AMMA transect. J Clim 26:6471–6505. doi:10.1175/JCLI-D-12-00505.1

    Article  Google Scholar 

  • Rowell DP (2001) Teleconnections between the tropical Pacific and the Sahel. Q J R Meteorol Soc 127:1683–1706. doi:10.1002/qj.49712757512

    Article  Google Scholar 

  • Rowell DP (2013) Simulating SST teleconnections to Africa: what is the state of the art? J Clim 26:5397–5418. doi:10.1175/JCLI-D-12-00761.1

    Article  Google Scholar 

  • Santer BD, Taylor KE, Gleckler PJ, Bonfils C, Barnett TP, Pierce DW, Wigley TML, Mears C, Wentz FJ, Bruggemann W, Gillett NP, Klein SA, Solomon S, Stott PA, Wehner MF (2009) Incorporating model quality information in climate change detection and attribution studies. Proc Natl Acad Sci USA 106:14778–14783. doi:10.1073/pnas.0901736106

    Article  Google Scholar 

  • Skinner CB, Ashfaq M, Diffenbaugh NS (2012) Influence of twenty-first-century atmospheric and sea surface temperature forcing on West African climate. J Clim 25:527–542. doi:10.1175/2011JCLI4183.1

    Article  Google Scholar 

  • Tanaka HL, Ishizaki N, Kitoh A (2004) Trend and interannual variability of Walker, monsoon and Hadley circulations defined by velocity potential in the upper troposphere. Tellus Ser A Dyn Meteorol Oceanogr 56:250–269. doi:10.1111/j.1600-0870.2004.00049.x

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. doi:10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  • Thorncroft CD, Blackburn M (1999) Maintenance of the African easterly jet. Q J R Meteorol Soc 125:763–786. doi:10.1002/qj.49712555502

    Google Scholar 

  • Ting M, Kushnir Y, Seager R, Li C (2009) Forced and internal twentieth-century SST trends in the North Atlantic. J Clim 22:1469–1481. doi:10.1175/2008JCLI2561.1

    Article  Google Scholar 

  • Trenberth KE, Jones PD, Ambenje P, Bojariu R, Easterling D, Klein Tank A, Parker D, Rahimzadeh F, Renwick JA, Rusticucci M, Soden B, Zhai P (2007) Observations: surface and atmospheric climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Villamayor J, Mohino E (2015) Robust Sahel drought due to the Interdecadal Pacific Oscillation in CMIP5 simulations. Geophys Res Lett 42:1214–1222. doi:10.1002/2014GL062473

    Article  Google Scholar 

  • Vizy EK, Cook KH (2009) A mechanism for African monsoon breaks: mediterranean cold air surges. J Geophys Res Atmos 114:1–19. doi:10.1029/2008JD010654

    Article  Google Scholar 

  • Xue Y et al (2010) Intercomparison and analyses of the climatology of the West African Monsoon in the West African Monsoon Modeling and Evaluation project (WAMME) first model intercomparison experiment. Clim Dyn 35:3–27. doi:10.1007/s00382-010-0778-2

    Article  Google Scholar 

  • Zhang R, Delworth TL (2006) Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys Res Lett 33:L17712. doi:10.1029/2006GL026267

    Article  Google Scholar 

Download references

Acknowledgments

This work benefitted from the support of the Agence Nationale de la Recherche (ANR) Grant ANR-10-LABX-18-01 of the national Programme Investissements d’Avenir. Funding for this work was also provided by Laboratoire d’excellence Institut Pierre Simon Laplace (L-IPSL). We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modelling groups (listed in Table 1 of this paper) for producing and making available their model output. For CMIP the US Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. Authors thank A. Evan for useful discussions, and two anonymous reviewers for their insightful comments that have greatly improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Gaetani.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1326 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaetani, M., Flamant, C., Bastin, S. et al. West African monsoon dynamics and precipitation: the competition between global SST warming and CO2 increase in CMIP5 idealized simulations. Clim Dyn 48, 1353–1373 (2017). https://doi.org/10.1007/s00382-016-3146-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s00382-016-3146-z

Keywords

Profiles

  1. Marco Gaetani
  2. Sandrine Bony