Skip to main content
Log in

Evaluating rainfall errors in global climate models through cloud regimes

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Global climate models suffer from a persistent shortcoming in their simulation of rainfall by producing too much drizzle and too little intense rain. This erroneous distribution of rainfall is a result of deficiencies in the representation of underlying processes of rainfall formation. In the real world, clouds are precursors to rainfall and the distribution of clouds is intimately linked to the rainfall over the area. This study examines the model representation of tropical rainfall using the cloud regime concept. In observations, these cloud regimes are derived from cluster analysis of joint-histograms of cloud properties retrieved from passive satellite measurements. With the implementation of satellite simulators, comparable cloud regimes can be defined in models. This enables us to contrast the rainfall distributions of cloud regimes in 11 CMIP5 models to observations and decompose the rainfall errors by cloud regimes. Many models underestimate the rainfall from the organized convective cloud regime, which in observation provides half of the total rain in the tropics. Furthermore, these rainfall errors are relatively independent of the model’s accuracy in representing this cloud regime. Error decomposition reveals that the biases are compensated in some models by a more frequent occurrence of the cloud regime and most models exhibit substantial cancellation of rainfall errors from different regimes and regions. Therefore, underlying relatively accurate total rainfall in models are significant cancellation of rainfall errors from different cloud types and regions. The fact that a good representation of clouds does not lead to appreciable improvement in rainfall suggests a certain disconnect in the cloud-precipitation processes of global climate models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from €39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Strictly speaking, these are clouds whose tops are located in the mid-level altitudes.

References

  • Arakawa A (2004) The cumulus parameterization problem: past, present, and future. J Clim 17(13):2493–2525. doi:10.1175/1520-0442(2004)017<2493:RATCPP>2.0.CO;2

    Article  Google Scholar 

  • Bodas-Salcedo A, Webb MJ, Bony S, Chepfer H, Dufresne JL, Klein SA, Zhang Y, Marchand R, Haynes JM, Pincus R, John VO (2011) COSP: satellite simulation software for model assessment. Bull Am Meteorol Soc 92(8):1023–1043. doi:10.1175/2011BAMS2856.1

    Article  Google Scholar 

  • Bodas-Salcedo A, Williams KD, Field PR, Lock AP (2012) The surface downwelling solar radiation surplus over the Southern Ocean in the Met Office model: the role of Midlatitude cyclone clouds. J Clim 25(21):7467–7486. doi:10.1175/JCLI-D-11-00702.1

    Article  Google Scholar 

  • Bodas-Salcedo A, Williams KD, Ringer MA, Beau I, Cole JNS, Dufresne JL, Koshiro T, Stevens B, Wang Z, Yokohata T (2014) Origins of the solar radiation biases over the Southern Ocean in CFMIP2 models. J Clim 27(1):41–56. doi:10.1175/JCLI-D-13-00169.1

    Article  Google Scholar 

  • Bony S, Webb M, Bretherton CS, Klein SA, Siebesma P, Tselioudis G, Zhang M (2011) CFMIP: towards a better evaluation and understanding of clouds and cloud feedbacks in CMIP5 models. Clivar Exch 56(2):20–22

    Google Scholar 

  • Chen Y, Del Genio AD (2009) Evaluation of tropical cloud regimes in observations and a general circulation model. Clim Dyn 32(2):355–369. doi:10.1007/s00382-008-0386-6

    Article  Google Scholar 

  • Dai A (2006) Precipitation characteristics in eighteen coupled climate models. J Clim 19(18):4605–4630. doi:10.1175/JCLI3884.1

    Article  Google Scholar 

  • Folkins I, Mitovski T, Pierce JR (2014) A simple way to improve the diurnal cycle in convective rainfall over land in climate models. J Geophys Res Atmos 119(5):2113–2130. doi:10.1002/2013JD020149

    Article  Google Scholar 

  • Gordon ND, Norris JR, Weaver CP, Klein SA (2005) Cluster analysis of cloud regimes and characteristic dynamics of midlatitude synoptic systems in observations and a model. J Geophys Res 110(D15):D15S17. doi:10.1029/2004JD005027

    Article  Google Scholar 

  • Handlos ZJ, Back LE (2014) Estimating vertical motion profile shape within tropical weather states over the oceans. J Clim 27(20):7667–7686. doi:10.1175/JCLI-D-13-00602.1

    Article  Google Scholar 

  • Hintze JL, Nelson RD (1998) Violin plots: a box plot-density trace synergism. Am Stat 52(2):181–184. doi:10.1080/00031305.1998.10480559

    Google Scholar 

  • Houze RA, Rasmussen KL, Zuluaga MD, Brodzik SR (2015) The variable nature of convection in the tropics and subtropics: a legacy of 16 years of the tropical rainfall measuring mission satellite. Rev Geophys 53:994–1021. doi:10.1002/2015RG000488

    Article  Google Scholar 

  • Huffman GJ, Bolvin DT, Nelkin EJ, Wolff DB, Adler RF, Gu G, Hong Y, Bowman KP, Stocker EF (2007) The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeorol 8(1):38–55. doi:10.1175/JHM560.1

    Article  Google Scholar 

  • Jakob C, Schumacher C (2008) Precipitation and latent heating characteristics of the major Tropical Western Pacific cloud regimes. J Clim 21(17):4348–4364. doi:10.1175/2008JCLI2122.1

    Article  Google Scholar 

  • Jakob C, Tselioudis G (2003) Objective identification of cloud regimes in the Tropical Western Pacific. Geophys Res Lett 30(21):2082. doi:10.1029/2003GL018367

    Article  Google Scholar 

  • Jiang X, Waliser DE, Xavier PK, Petch J, Klingaman NP, Woolnough SJ, Guan B, Bellon G, Crueger T, DeMott C, Hannay C, Lin H, Hu W, Kim D, Lappen CL, Lu MM, Ma HY, Miyakawa T, Ridout JA, Schubert SD, Scinocca J, Seo KH, Shindo E, Song X, Stan C, Tseng WL, Wang W, Wu T, Wu X, Wyser K, Zhang GJ, Zhu H (2015) Vertical structure and physical processes of the Madden–Julian oscillation: exploring key model physics in climate simulations. J Geophys Res Atmos 120(10):4718–4748. doi:10.1002/2014JD022375

    Article  Google Scholar 

  • Jin D, Oreopoulos L, Lee D (2017a) Regime-based evaluation of cloudiness in CMIP5 models. Clim Dyn 48(1–2):89–112. doi:10.1007/s00382-016-3064-0

    Article  Google Scholar 

  • Jin D, Oreopoulos L, Lee D (2017b) Simplified ISCCP cloud regimes for evaluating cloudiness in CMIP5 models. Clim Dyn 48(1–2):113–130. doi:10.1007/s00382-016-3107-6

    Article  Google Scholar 

  • Kang IS, Yang YM, Tao WK (2015) GCMs with implicit and explicit representation of cloud microphysics for simulation of extreme precipitation frequency. Clim Dyn 45(1–2):325–335. doi:10.1007/s00382-014-2376-1

    Article  Google Scholar 

  • Kendon EJ, Ban N, Roberts NM, Fowler HJ, Roberts MJ, Chan SC, Evans JP, Fosser G, Wilkinson JM (2017) Do convection-permitting regional climate models improve projections of future precipitation change? Bull Am Meteorol Soc 98(1):79–93. doi:10.1175/BAMS-D-15-0004.1

    Article  Google Scholar 

  • Klein SA, Jakob C (1999) Validation and sensitivities of frontal clouds simulated by the ECMWF model. Mon Weather Rev 127(10):2514–2531. doi:10.1175/1520-0493(1999)127<2514:VASOFC>2.0.CO;2

    Article  Google Scholar 

  • Kooperman GJ, Pritchard MS, Burt MA, Branson MD, Randall DA (2016) Robust effects of cloud superparameterization on simulated daily rainfall intensity statistics across multiple versions of the Community Earth System Model. J Adv Model Earth Syst 8(1):140–165. doi:10.1002/2015MS000574

    Article  Google Scholar 

  • Lee D, Oreopoulos L, Huffman GJ, Rossow WB, Kang IS (2013) The precipitation characteristics of ISCCP tropical weather states. J Clim 26(3):772–788. doi:10.1175/JCLI-D-11-00718.1

    Article  Google Scholar 

  • Lin JL, Kiladis GN, Mapes BE, Weickmann KM, Sperber KR, Lin W, Wheeler MC, Schubert SD, Del Genio A, Donner LJ, Emori S, Gueremy JF, Hourdin F, Rasch PJ, Roeckner E, Scinocca JF (2006) Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: convective signals. J Clim 19(12):2665–2690. doi:10.1175/JCLI3735.1

    Article  Google Scholar 

  • Mason S, Fletcher JK, Haynes JM, Franklin C, Protat A, Jakob C (2015) A hybrid cloud regime methodology used to evaluate Southern Ocean cloud and shortwave radiation errors in ACCESS. J Clim 28(15):6001–6018. doi:10.1175/JCLI-D-14-00846.1

    Article  Google Scholar 

  • Mekonnen A, Rossow WB (2011) The interaction between deep convection and Easterly Waves over Tropical North Africa: a weather state perspective. J Clim 24(16):4276–4294. doi:10.1175/2011JCLI3900.1

    Article  Google Scholar 

  • Meredith EP, Maraun D, Semenov VA, Park W (2015) Evidence for added value of convection-permitting models for studying changes in extreme precipitation. J Geophys Res Atmos 120(24):12,500–12,513. doi:10.1002/2015JD024238

    Article  Google Scholar 

  • Moncrieff MW, Waliser DE, Miller MJ, Shapiro MA, Asrar GR, Caughey J (2012) Multiscale convective organization and the YOTC virtual global field campaign. Bull Am Meteorol Soc 93(8):1171–1187. doi:10.1175/BAMS-D-11-00233.1

    Article  Google Scholar 

  • Oreopoulos L, Rossow WB (2011) The cloud radiative effects of International Satellite Cloud Climatology Project weather states. J Geophys Res 116(D12):D12,202. doi:10.1029/2010JD015472

    Article  Google Scholar 

  • Rossow WB, Schiffer RA (1999) Advances in understanding clouds from ISCCP. Bull Am Meteorol Soc 80(11):2261–2287. doi:10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2

    Article  Google Scholar 

  • Rossow WB, Tselioudis G, Polak A, Jakob C (2005) Tropical climate described as a distribution of weather states indicated by distinct mesoscale cloud property mixtures. Geophys Res Lett 32(21):L21,812. doi:10.1029/2005GL024584

    Article  Google Scholar 

  • Rossow WB, Mekonnen A, Pearl C, Goncalves W (2013) Tropical precipitation extremes. J Clim 26(4):1457–1466. doi:10.1175/JCLI-D-11-00725.1

    Article  Google Scholar 

  • Stachnik JP, Schumacher C, Ciesielski PE (2013) Total heating characteristics of the ISCCP tropical and subtropical cloud regimes. J Clim 26(18):7097–7116. doi:10.1175/JCLI-D-12-00673.1

    Article  Google Scholar 

  • Stephens GL, L’Ecuyer T, Forbes R, Gettlemen A, Golaz JC, Bodas-Salcedo A, Suzuki K, Gabriel P, Haynes J (2010) Dreary state of precipitation in global models. J Geophys Res 115(D24):D24,211. doi:10.1029/2010JD014532

    Article  Google Scholar 

  • Sun Y, Solomon S, Dai A, Portmann RW (2006) How often does it rain? J Clim 19(6):916–934. doi:10.1175/JCLI3672.1

    Article  Google Scholar 

  • Tan J, Jakob C, Lane TP (2013) On the identification of the large-scale properties of tropical convection using cloud regimes. J Clim 26(17):6618–6632. doi:10.1175/JCLI-D-12-00624.1

    Article  Google Scholar 

  • Tan J, Jakob C, Rossow WB, Tselioudis G (2015) Increases in tropical rainfall driven by changes in frequency of organized deep convection. Nature 519(7544):451–454. doi:10.1038/nature14339

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498. doi:10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  • Tromeur E, Rossow WB (2010) Interaction of tropical deep convection with the large-scale circulation in the MJO. J Clim 23(7):1837–1853. doi:10.1175/2009JCLI3240.1

    Article  Google Scholar 

  • Tsushima Y, Ringer MA, Webb MJ, Williams KD (2013) Quantitative evaluation of the seasonal variations in climate model cloud regimes. Clim Dyn 41(9–10):2679–2696. doi:10.1007/s00382-012-1609-4

    Article  Google Scholar 

  • Tsushima Y, Ringer MA, Koshiro T, Kawai H, Roehrig R, Cole J, Watanabe M, Yokohata T, Bodas-Salcedo A, Williams KD, Webb MJ (2016) Robustness, uncertainties, and emergent constraints in the radiative responses of stratocumulus cloud regimes to future warming. Clim Dyn 46(9–10):3025–3039. doi:10.1007/s00382-015-2750-7

    Article  Google Scholar 

  • Williams KD, Tselioudis G (2007) GCM intercomparison of global cloud regimes: present-day evaluation and climate change response. Clim Dyn 29(2–3):231–250. doi:10.1007/s00382-007-0232-2

    Article  Google Scholar 

  • Williams KD, Webb MJ (2009) A quantitative performance assessment of cloud regimes in climate models. Clim Dyn 33(1):141–157. doi:10.1007/s00382-008-0443-1

    Article  Google Scholar 

  • Williams KD, Senior CA, Slingo A, Mitchell JFB (2005) Towards evaluating cloud response to climate change using clustering technique identification of cloud regimes. Clim Dyn 24(7–8):701–719. doi:10.1007/s00382-004-0512-z

    Article  Google Scholar 

  • Yuan W, Yu R, Zhang M, Lin W, Li J, Fu Y (2013) Diurnal cycle of summer precipitation over subtropical East Asia in CAM5. J Clim 26(10):3159–3172. doi:10.1175/JCLI-D-12-00119.1

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful for valuable feedback from Dongmin Lee. JT is supported by an appointment to the NASA Postdoctoral Program at Goddard Space Flight Center, administered by USRA through a contract with NASA (NNH15CO48B). LO and DJ gratefully acknowledge support by NASA’s Modeling Analysis and Prediction program. CJ is supported by the ARC Centre of Excellence for Climate System Science (CE110001028). ISCCP data is available at https://isccp.giss.nasa.gov/. TMPA was provided by the NASA GSFC PPS team and NASA GES DISC, and can be downloaded at http://pmm.nasa.gov/data-access. The CMIP5 data was provided by the WCRP and archived by the PCMDI at http://pcmdi.llnl.gov/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jackson Tan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 174 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, J., Oreopoulos, L., Jakob, C. et al. Evaluating rainfall errors in global climate models through cloud regimes. Clim Dyn 50, 3301–3314 (2018). https://doi.org/10.1007/s00382-017-3806-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s00382-017-3806-7

Keywords