Skip to main content
Log in

Response of streamflow to climate variability and changes in human activities in the semiarid highlands of northern Ethiopia

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

Climate variability and human activities are two major drivers influencing changes in streamflow response of a watershed, and thus assessing their relative effect is essential for developing sustainable water resources planning and management strategies at watershed-scale. In this study, a runoff model driven by rainfall and potential evapotranspiration was established to estimate the effect of climate variability on the changes in annual streamflow of Agula watershed in northern Ethiopia. Significant decreasing trends were observed for annual and wet season streamflow between 1992 and 2012, while dry season streamflow showed an increasing trend. Analyses of seasonal and annual rainfall records showed no significant trends. The change-point test revealed that an abrupt change in annual streamflow occurred in 2000. In the period 2000–2012, the mean annual and wet season streamflow decreased by 36 and 49%, respectively compared with 1992–1999, while dry season streamflow increased by 57%. Climate variability was estimated to account for 22% of the total reduction in mean annual streamflow, whereas human activities (e.g., proper watershed management practices and associated changes in land use/land cover among other factors) were responsible for 78%; indicating that human activities were the major drivers of changes in the streamflow response. The results of this study point to the potential that reduced wet season flow and improved dry season water availability can be achieved by proper planning and implementation of appropriate watershed management practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from €39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aerts R, Nyssen J, Haile M (2009) On the difference between “exclosures” and “enclosures” in ecology and the environment. J Arid Environ 73(8):762–763. doi:10.1016/j.jaridenv.2009.01.006

    Article  Google Scholar 

  • Alemayehu F, Taha N, Nyssen J, Girma A, Zenebe A, Behailu M, Deckers S, Poesen J (2009) The impacts of watershed management on land use and land cover dynamics in eastern Tigray (Ethiopia). Resour Conserv Recycl 53(4):192–198. doi:10.1016/j.resconrec.2008.11.007

    Article  Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration-guidelines for computing crop water requirements-FAO irrigation and drainage paper 56. FAO, Rome

    Google Scholar 

  • Barrow CJ (1992) World atlas of desertification (United Nations Environment Programme). Land Degrad Dev 3(4):249. doi:10.1002/ldr.3400030407

    Article  Google Scholar 

  • Belay KT, Van Rompaey A, Poesen J, Van Bruyssel S, Deckers J, Amare K (2014) Spatial analysis of land cover changes in eastern Tigray (Ethiopia) from 1965 to 2007: are there signs of a forest transition? Land Degrad Dev 26(7):680–689. doi:10.1002/ldr.2275

    Article  Google Scholar 

  • Bellot J, Bonet A, Sanchez JR, Chirino E (2001) Likely effects of land use changes on the runoff and aquifer recharge in a semiarid landscape using a hydrological model. Landscape Urban Plan 55(1):41–53. doi:10.1016/s0169-2046(01)00118-9

    Article  Google Scholar 

  • Beven K (1989) Changing ideas in hydrology - the case of physically-based models. J Hydrol 105(1):157–172. doi:10.1016/0022-1694(89)90101-7

    Article  Google Scholar 

  • Bewket W, Sterk G (2005) Dynamics in land cover and its effect on stream flow in the Chemoga watershed, Blue Nile basin, Ethiopia. Hydrol Process 19(2):445–458. doi:10.1002/hyp.5542

    Article  Google Scholar 

  • Brath A, Montanari A, Toth E (2004) Analysis of the effects of different scenarios of historical data availability on the calibration of a spatially-distributed hydrological model. J Hydrol 291(3):232–253. doi:10.1016/j.jhydrol.2003.12.044

    Article  Google Scholar 

  • Bryan E, Deressa TT, Gbetibouo GA, Ringler C (2009) Adaptation to climate change in Ethiopia and South Africa: options and constraints. Environ Sci Policy 12(4):413–426. doi:10.1016/j.envsci.2008.11.002

    Article  Google Scholar 

  • Budyko MI (1974) Climate and life. Academic Press, San Diego CA

    Google Scholar 

  • Chen Z, Chen Y, Li B (2012) Quantifying the effects of climate variability and human activities on runoff for Kaidu River Basin in arid region of northwest China. Theor Appl Climatol 111(3):537–545. doi:10.1007/s00704-012-0680-4

    Google Scholar 

  • Descheemaeker K, Nyssen J, Poesen J, Raes D, Haile M, Muys B, Deckers S (2006) Runoff on slopes with restoring vegetation: a case study from the Tigray highlands, Ethiopia. J Hydrol 331(1):219–241. doi:10.1016/j.jhydrol.2006.05.015

    Article  Google Scholar 

  • El Kenawy AM, McCabe MF, Vicente-Serrano SM, López-Moreno JI, Robaa SM (2016) Changes in the frequency and severity of hydrological droughts over Ethiopia from 1960 to 2013. Cuadernos de Investigación Geográfica 42(1):145–166. doi:10.18172/cig.2931

    Article  Google Scholar 

  • ERDAS (2006) ERDAS field guide. Leica Geosystems Geospatial Imaging, LCC, Norcross

    Google Scholar 

  • Esser K, Vågen TG, Tilahun Y, Haile M (2002) Soil conservation in Tigray, Ethiopia. Noragric Report No. 5. Agricultural University of Norway

  • Fenta AA, Yasuda H, Shimizu K, Haregeweyn N, Negussie A (2016) Dynamics of soil erosion as influenced by watershed management practices: a case study of the Agula watershed in the semiarid highlands of northern Ethiopia. Environ Manag 58(5):889–905. doi:10.1007/s00267-016-0757-4

    Article  Google Scholar 

  • García-Ruiz JM, López-Moreno JI, Vicente-Serrano SM, Lasanta T, Beguería S (2011) Mediterranean water resources in a global change scenario. Earth-Sci Rev 105(3–4):121–139. doi:10.1016/j.earscirev.2011.01.006

    Article  Google Scholar 

  • Gebreyohannes T, De Smedt F, Walraevens K, Gebresilassie S, Hussien A, Hagos M, Amare K, Deckers J, Gebrehiwot K (2013) Application of a spatially distributed water balance model for assessing surface water and groundwater resources in the Geba basin, Tigray, Ethiopia. J Hydrol 499:110–123. doi:10.1016/j.jhydrol.2013.06.026

    Article  Google Scholar 

  • Getachew B (2007) Birki integrated watershed management study report. Tigray Bureau of Water Resources, Mekelle

    Google Scholar 

  • Hadgu G, Tesfaye K, Mamo G, Kassa B (2013) Trend and variability of rainfall in Tigray, northern Ethiopia: analysis of meteorological data and farmers’ perception. J Agric Res 1(6):088–100. doi:10.15413/ajar.2013.0117

    Google Scholar 

  • Haregeweyn N, Berhe A, Tsunekawa A, Tsubo M, Meshesha DT (2012) Integrated watershed management as an effective approach to curb land degradation: a case study of the Enabered watershed in northern Ethiopia. Environ Manag 50(6):1219–1233. doi:10.1007/s00267-012-9952-0

    Article  Google Scholar 

  • Haregeweyn N, Tsunekawa A, Nyssen J, Poesen J, Tsubo M, Meshesha DT, Schütt B, Adgo E, Tegegne F (2015a) Soil erosion and conservation in Ethiopia: a review. Prog Phys Geogr 39(6):750–774. doi:10.1177/0309133315598725

    Article  Google Scholar 

  • Haregeweyn N, Tsunekawa A, Tsubo M, Meshesha DT, Adgo E, Poesen J, Schütt B (2015b) Analyzing the hydrologic effects of region-wide land and water development interventions: a case study of the Upper Blue Nile basin. Reg Environ Change 16(4):951–966. doi:10.1007/s10113-015-0813-2

    Article  Google Scholar 

  • Hargreaves GH, Samani ZA (1985) Reference crop evapotranspiration from temperature. Appl Eng Agric 1(2):96–99. doi:10.13031/2013.26773

    Article  Google Scholar 

  • Huang M, Zhang L (2004) Hydrological responses to conservation practices in a catchment of the Loess Plateau, China. Hydrol Process 18(10):1885–1898. doi:10.1002/hyp.1454

    Article  Google Scholar 

  • Igbokwe KN, Adede J (2001) Integrated watershed management in eastern Tigray, Ethiopia. Midterm Impact Evaluation Report, Nairobi

    Google Scholar 

  • Kahya E, Kalayci S (2004) Trend analysis of stream flow in Turkey. J Hydrol 289(1):128–144. doi:10.1016/j.jhydrol.2003.11.006

    Article  Google Scholar 

  • Kendall MG (1975) Rank correlation methods. Charles Griffin, London

    Google Scholar 

  • Legesse D, Vallet-Coulomb C, Gasse F (2003) Hydrological response of a catchment to climate and land use change in tropical Africa: case study South Central Ethiopia. J Hydrol 275(1):67–85. doi:10.1016/s0022-1694(03)00019-2

    Article  Google Scholar 

  • Li B, Su H, Chen F, Li H, Zhang R, Tian J, Chen S, Yang Y, Rong Y (2014) Separation of the impact of climate change and human activity on streamflow in the upper and middle reaches of the Taoer River, northeastern China. Theor Appl Climatol 118:271–283. doi:10.1007/s00704-013-1032-8

    Article  Google Scholar 

  • Lu D, Mausel P, Brondizio E, Moran E (2004) Change detection techniques. Int J Remote Sens 25(12):2365–2407. doi:10.1080/0143116031000139863

    Article  Google Scholar 

  • Ma Z, Kang S, Zhang L, Tong L, Su X (2008) Analysis of impacts of climate variability and human activity on streamflow for a river basin in arid region of northwest China. J Hydrol 352(3):239–249. doi:10.1016/j.jhydrol.2007.12.022

    Article  Google Scholar 

  • Ma H, Yang D, Tan SK, Gao B, Hu Q (2010) Impact of climate variability and human activity on streamflow decrease in the Miyun Reservoir catchment. J Hydrol 389(3):317–324. doi:10.1016/j.jhydrol.2010.06.010

    Article  Google Scholar 

  • Mann HB (1945) Nonparametric tests against trend. Econometrica 13:245–259. doi:10.2307/1907187

    Article  Google Scholar 

  • Mekuria W, Veldkamp E, Haile M, Nyssen J, Muys B, Gebrehiwot K (2007) Effectiveness of exclosures to restore degraded soils as a result of overgrazing in Tigray, Ethiopia. J Arid Environ 69(2):270–284. doi:10.1016/j.jaridenv.2006.10.009

    Article  Google Scholar 

  • Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50(3):885–900. doi:10.13031/2013.23153

    Article  Google Scholar 

  • Nyssen J, Poesen J, Gebremichael D, Vancampenhout K, D’aes M, Yihdego G, Govers G, Leirs H, Moeyersons J, Naudts J, Haregeweyn N, Haile M, Deckers J (2007) Interdisciplinary on-site evaluation of stone bunds to control soil erosion on cropland in northern Ethiopia. Soil Tillage Res 94(1):151–163. doi:10.1016/j.still.2006.07.011

    Article  Google Scholar 

  • Nyssen J, Clymans W, Descheemaeker K, Poesen J, Vandecasteele I, Vanmaercke M, Zenebe A, Camp MV, Haile M, Haregeweyen N, Moeyersons J, Martens K, Gebreyohannes T, Deckers J, Walraevens K (2010) Impact of soil and water conservation measures on catchment hydrological response-a case in north Ethiopia. Hydrol Process 24(13):1880–1895. doi:10.1002/hyp.7628

    Article  Google Scholar 

  • Prowse TD, Beltaos S, Gardner JT, Gibson JJ, Granger RJ, Leconte R, Peters DL, Pietroniro A, Romolo LA, Toth B (2006) Climate change, flow regulation and land-use effects on the hydrology of the Peace-Athabasca-Slave system; findings from the Northern Rivers ecosystem initiative. Environ Monit Assess 113(1–3):167–197. doi:10.1007/s10661-005-9080-x

    Article  CAS  Google Scholar 

  • Quilbè R, Rousseau AN, Moquet JS, Savary S, Ricard S, Garbouj MS (2008) Hydrological responses of a watershed to historical land use evolution and future land use scenarios under climate change conditions. Hydrol Earth Syst Sci 12(1):101–110. doi:10.5194/hess-12-101-2008

    Article  Google Scholar 

  • Sneyers R (1975) Sur l’analyse statistique des s´eries d’observations. WMO Tech Note

  • Sonneveld BGJS, Keyzer MA (2003) Land under pressure: soil conservation concerns and opportunities for Ethiopia. Land Degrad Dev 14(1):5–23. doi:10.1002/ldr.503

    Article  Google Scholar 

  • Taddese G (2001) Land degradation: a challenge to Ethiopia. Environ Manag 27(6):815–824. doi:10.1007/s002670010190

    Article  CAS  Google Scholar 

  • Taye G, Poesen J, Wesemael BV, Vanmaercke M, Teka D, Deckers J, Haregeweyn N (2013) Effects of land use, slope gradient, and soil and water conservation structures on runoff and soil loss in semi-arid northern Ethiopia. Phys Geogr 34(3):236–259. doi:10.1080/02723646.2013.832098

    Google Scholar 

  • Van Niel TG, McVicar TR, Datt B (2005) On the relationship between training sample size and data dimensionality: Monte Carlo analysis of broadband multi-temporal classification. Remote Sens Environ 98(4):468–480. doi:10.1016/j.rse.2005.08.011

    Article  Google Scholar 

  • Wahren A, Feger KH, Schwärzel K, Münch A (2009) Land-use effects on flood generation–considering soil hydraulic measurements in modelling. Adv Geosci 21:99–107. doi:10.5194/adgeo-21-99-2009

    Article  Google Scholar 

  • Weiß M, Menzel L (2008) A global comparison of four potential evapotranspiration equations and their relevance to stream flow modelling in semi-arid environments. Adv Geosci 18:15–23. doi:10.5194/adgeo-18-15-2008

    Article  Google Scholar 

  • Xu H, Xu CY, Chen H, Zhang Z, Li L (2013) Assessing the influence of rain gauge density and distribution on hydrological model performance in a humid region of China. J Hydrol 505:1–12. doi:10.1016/j.jhydrol.2013.09.004

    Article  Google Scholar 

  • Yayneshet T, Eik LO, Moe SR (2009) The effects of exclosures in restoring degraded semi-arid vegetation in communal grazing lands in northern Ethiopia. J Arid Environ 73(4):542–549. doi:10.1016/j.jaridenv.2008.12.002

    Article  Google Scholar 

  • Zhang L, Dawes W, Walker G (2001) Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour Res 37(3):701–708. doi:10.1029/2000wr900325

    Article  Google Scholar 

  • Zhang C, Zhang B, Li W, Liu M (2014) Response of streamflow to climate change and human activity in Xitiaoxi river basin in China. Hydrol Process 28(1):43–50. doi:10.1002/hyp.9539

    Article  CAS  Google Scholar 

  • Zheng H, Zhang L, Zhu R, Liu C, Sato Y, Fukushima Y (2009) Responses of streamflow to climate and land surface change in the headwaters of the Yellow River Basin. Water Resour Res. doi:10.1029/2007wr006665

    Google Scholar 

Download references

Acknowledgements

The National Meteorology Agency (NMA) and Ministry of Water, Irrigation and Energy (MoWIE) of Ethiopia are gratefully acknowledged for provision of the rainfall and streamflow data used in this study. The first author is grateful to the International Platform for Dryland Research and Education (IPDRE) of Tottori University for offering an overseas travel grant. Thanks are due to Mr. Kidanemariam Birhane (Mekelle University) for his assistance during data collection. The two anonymous reviewers are gratefully acknowledged for providing valuable comments on the earlier version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayele Almaw Fenta.

Additional information

Editor: Juan Ignacio Lopez Moreno.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 221 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fenta, A.A., Yasuda, H., Shimizu, K. et al. Response of streamflow to climate variability and changes in human activities in the semiarid highlands of northern Ethiopia. Reg Environ Change 17, 1229–1240 (2017). https://doi.org/10.1007/s10113-017-1103-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s10113-017-1103-y

Keywords