Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Eight glacial cycles from an Antarctic ice core

Abstract

The Antarctic Vostok ice core provided compelling evidence of the nature of climate, and of climate feedbacks, over the past 420,000 years. Marine records suggest that the amplitude of climate variability was smaller before that time, but such records are often poorly resolved. Moreover, it is not possible to infer the abundance of greenhouse gases in the atmosphere from marine records. Here we report the recovery of a deep ice core from Dome C, Antarctica, that provides a climate record for the past 740,000 years. For the four most recent glacial cycles, the data agree well with the record from Vostok. The earlier period, between 740,000 and 430,000 years ago, was characterized by less pronounced warmth in interglacial periods in Antarctica, but a higher proportion of each cycle was spent in the warm mode. The transition from glacial to interglacial conditions about 430,000 years ago (Termination V) resembles the transition into the present interglacial period in terms of the magnitude of change in temperatures and greenhouse gases, but there are significant differences in the patterns of change. The interglacial stage following Termination V was exceptionally long—28,000 years compared to, for example, the 12,000 years recorded so far in the present interglacial period. Given the similarities between this earlier warm period and today, our results may imply that without human intervention, a climate similar to the present one would extend well into the future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Measured parameters from the EPICA Dome C ice core, on an ice depth scale.
Figure 2: Comparison of EPICA Dome C data with other palaeoclimatic records.
Figure 3: Termination V in the EPICA Dome C ice core on an ice depth scale.
Figure 4: Histogram of δD values before and after 430 kyr.
Figure 5: Comparison of Termination V plus MIS 11 with Termination I plus Holocene. δD data for MIS 11 (1-kyr averages) are shown as a solid blue line using the lower x axis; data for the Holocene are shown as a dashed red line using the upper x axis.

Similar content being viewed by others

References

  1. Petit, J. R. et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–436 (1999)

    Article  ADS  CAS  Google Scholar 

  2. Imbrie, J. et al. On the structure and origin of major glaciation cycles. 2. The 100,000-year cycle. Paleoceanography 8, 699–735 (1993)

    Article  ADS  Google Scholar 

  3. Bassinot, F. C. et al. The astronomical theory of climate and the age of the Brunhes–Matuyama magnetic reversal. Earth Planet. Sci. Lett. 126, 91–108 (1994)

    Article  ADS  Google Scholar 

  4. Berger, A. & Loutre, M. F. Insolation values for the climate of the last 10 million years. Quat. Sci. Rev. 10, 297–317 (1991)

    Article  ADS  Google Scholar 

  5. Watanabe, O. et al. Homogeneous climate variability across East Antarctica over the past three glacial cycles. Nature 422, 509–512 (2003)

    Article  ADS  CAS  Google Scholar 

  6. Fischer, H., Wahlen, M., Smith, J., Mastroianni, D. & Deck, B. Ice core records of atmospheric CO2 around the last three glacial terminations. Science 283, 1712–1714 (1999)

    Article  ADS  CAS  Google Scholar 

  7. Johnsen, S. J. et al. Oxygen isotope and palaeotemperature records from six Greenland ice-core stations: Camp Century, Dye-3, GRIP, GISP2, Renland and NorthGRIP. J. Quat. Sci. 16, 299–307 (2001)

    Article  Google Scholar 

  8. The EPICA Dome C 2001–02 science and drilling teams, Extending the ice core record beyond half a million years. Eos Trans. 83, 509–517 (2002)

    Article  Google Scholar 

  9. Lorius, C., Merlivat, L., Jouzel, J. & Pourchet, M. A 30,000-yr isotope climatic record from Antarctic ice. Nature 280, 644–648 (1979)

    Article  ADS  CAS  Google Scholar 

  10. Jouzel, J. et al. A new 27 ky high resolution East Antarctic climate record. Geophys. Res. Lett. 28, 3199–3202 (2001)

    Article  ADS  Google Scholar 

  11. Stenni, B. et al. An oceanic cold reversal during the last deglaciation. Science 293, 2074–2077 (2001)

    Article  ADS  CAS  Google Scholar 

  12. Monnin, E. et al. Atmospheric CO2 concentrations over the last glacial termination. Science 291, 112–114 (2001)

    Article  ADS  CAS  Google Scholar 

  13. Delmonte, B., Petit, J. R. & Maggi, V. Glacial to Holocene implications of the new 27000-year dust record from the EPICA Dome C (East Antarctica) ice core. Clim. Dyn. 18, 647–660 (2002)

    Article  Google Scholar 

  14. Röthlisberger, R. et al. Dust and sea salt variability in central East Antarctica (Dome C) over the last 45 kyrs and its implications for southern high-latitude climate. Geophys. Res. Lett. 29, doi:10.1029/2002GL015186 (2002)

  15. Stauffer, B., Flückiger, J., Wolff, E. W. & Barnes, P. R. F. The EPICA deep ice cores: First results and perspectives. Ann. Glaciol. (in the press)

  16. Wolff, E. W., Basile, I., Petit, J.-R. & Schwander, J. Comparison of Holocene electrical records from Dome C and Vostok, Antarctica. Ann. Glaciol. 29, 89–93 (1999)

    Article  ADS  Google Scholar 

  17. Weiss, J. et al. Dome Concordia ice microstructure: impurities effect on grain growth. Ann. Glaciol. 35, 552–558 (2002)

    Article  ADS  Google Scholar 

  18. Jouzel, J. et al. Magnitude of isotope/temperature scaling for interpretation of central Antarctic ice cores. J. Geophys. Res. 108, doi:10.1029/2002JD002677 (2003)

  19. Blunier, T., Schwander, J., Chappellaz, J., Parrenin, F. & Barnola, J. M. What was the surface temperature in central Antarctica during the last glacial maximum? Earth Planet. Sci. Lett. 218, 379–388 (2004)

    Article  ADS  CAS  Google Scholar 

  20. Röthlisberger, R. et al. Limited dechlorination of sea salt aerosols during the last glacial period—Evidence from the European Project for Ice Coring in Antarctica (EPICA) Dome C ice core. J. Geophys. Res. 108, doi:10.1029/2003JD003604 (2003)

  21. Parrenin, F., Jouzel, J., Waelbroeck, C., Ritz, C. & Barnola, J. M. Dating the Vostok ice core by an inverse method. J. Geophys. Res. 106, 31837–31851 (2001)

    Article  ADS  CAS  Google Scholar 

  22. Goujon, C., Barnola, J. M. & Ritz, C. Modeling the densification of polar firn including heat diffusion: Application to close-off characteristics and gas isotopic fractionation for Antarctica and Greenland sites. J. Geophys. Res. 108, doi:10.1029/2002JD003319 (2003)

  23. Pepin, L., Raynaud, D., Barnola, J. M. & Loutre, M. F. Hemispheric roles of climate forcings during glacial–interglacial transitions as deduced from the Vostok record and LLN-2D model experiments. J. Geophys. Res. 106, 31885–31892 (2001)

    Article  ADS  CAS  Google Scholar 

  24. Berger, W. H. & Wefer, G. in Earth's Climate and Orbital Eccentricity: the Marine Isotope Stage 11 Question Geophys. Monogr 137 (eds Droxler, A. W., Poore, R. Z. & Burckle, L. H.) 41–59 (AGU, Washington, 2003)

    Book  Google Scholar 

  25. Becquey, S. & Gersonde, R. Past hydrographic and climatic changes in the Subantarctic Zone of the South Atlantic—The Pleistocene record from ODP Site 1090. Palaeogeogr. Palaeoclimatol. Palaeoecol. 182, 221–239 (2002)

    Article  Google Scholar 

  26. Winograd, I. J. et al. Continuous 500,000-year climate record from vein calcite in Devils-Hole, Nevada. Science 258, 255–260 (1992)

    Article  ADS  CAS  Google Scholar 

  27. Martinerie, P., Raynaud, D., Etheridge, D. M., Barnola, J.-M. & Mazaudier, D. Physical and climatic parameters which influence the air content in polar ice. Earth Planet. Sci. Lett. 112, 1–13 (1992)

    Article  ADS  Google Scholar 

  28. Raynaud, D., et al. in Earth's Climate and Orbital Eccentricity: the Marine Isotope Stage 11 Question Geophys. Monogr. 137 (eds Droxler, A. W., Poore, R. Z. & Burckle, L. H.) 27–40 (AGU, Washington, 2003)

    Book  Google Scholar 

  29. Hearty, P. J., Kindler, P., Cheng, H. & Edwards, R. L. A +20 m middle Pleistocene sea-level highstand (Bermuda and the Bahamas) due to partial collapse of Antarctic ice. Geology 27, 375–378 (1999)

    Article  ADS  Google Scholar 

  30. Droxler, A. W., Alley, R. B., Howard, W. R., Poore, R. Z. & Burckle, L. H. in Earth's Climate and Orbital Eccentricity: the Marine Isotope Stage 11 Question Geophys. Monogr. 137 (eds Droxler, A. W., Poore, R. Z. & Burckle, L. H.) 1–14 (AGU, Washington, 2003)

    Google Scholar 

  31. Berger, A. & Loutre, M. F. in Earth's Climate and Orbital Eccentricity: the Marine Isotope Stage 11 Question Geophys. Monogr. 137 (eds Droxler, A. W., Poore, R. Z. & Burckle, L. H.) 17–26 (AGU, Washington, 2003)

    Book  Google Scholar 

  32. Lea, D. W., Pak, D. K. & Spero, H. J. in Earth's Climate and Orbital Eccentricity: the Marine Isotope Stage 11 Question Geophys. Monogr. 137 (eds Droxler, A. W., Poore, R. Z. & Burckle, L. H.) 147–156 (AGU, Washington, 2003)

    Book  Google Scholar 

  33. Stocker, T. F. & Johnsen, S. J. A minimum thermodynamic model for the bipolar seesaw. Paleoceanography 18, doi:10.1029/2003PA000920 (2003)

  34. IPCC, IPCC Third Assessment Report: Climate Change 2001: The Scientific Basis (Cambridge Univ. Press, Cambridge, 2001)

    Google Scholar 

  35. Gay, M. & Weiss, J. Automatic reconstruction of polycrystalline ice microstructure from image analysis: application to the EPICA ice core at Dome Concordia, Antarctica. J. Glaciol. 45, 547–554 (1999)

    Article  ADS  Google Scholar 

  36. Röthlisberger, R. et al. Technique for continuous high-resolution analysis of trace substances in firn and ice cores. Environ. Sci. Technol. 34, 338–342 (2000)

    Article  ADS  Google Scholar 

  37. Littot, G. C. et al. Comparison of analytical methods used for measuring major ions in the EPICA Dome C (Antarctica) ice core. Ann. Glaciol. 35, 299–305 (2002)

    Article  ADS  CAS  Google Scholar 

  38. Landais, A. et al. A tentative reconstruction of the last interglacial and glacial inception in Greenland based on new gas measurements in the Greenland Ice Core Project (GRIP) ice core. J. Geophys. Res. 108, doi:10.1029/2002JD003147 (2003)

  39. Ritz, C. . Un Modèle Thermo-Méchanique d'Évolution pour le Bassin Glaciaire Antarctique Vostok-Glacier Byrd: Sensibilité aux Valeurs des Paramètres Mal Connus Thesis, Univ. J. Fourier (1992)

    Google Scholar 

  40. Ritz, C., Rommelaere, V. & Dumas, C. Modeling the evolution of Antarctic ice sheet over the last 420,000 years: Implications for altitude changes in the Vostok region. J. Geophys. Res. 106, 31943–31964 (2001)

    Article  ADS  Google Scholar 

  41. Schwander, J. et al. A tentative chronology for the EPICA Dome Concordia ice core. Geophys. Res. Lett. 28, 4243–4246 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the logistics and drilling teams. This work is a contribution to the European Project for Ice Coring in Antarctica (EPICA), a joint European Science Foundation/European Commission (EC) scientific programme, funded by the EC and by national contributions from Belgium, Denmark, France, Germany, Italy, The Netherlands, Norway, Sweden, Switzerland and the UK.

Correspondence and requests for materials should be addressed to E.W. ([email protected]).

Author information

Authors and Affiliations

Consortia

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Methods

Gives the full detail of the derivation of the EDC2 timescale used in the paper. (DOC 47 kb)

Supplementary Figure 1

Map showing the EPICA drilling sites along with the location of the previous deep Antarctic ice cores covering several glacial cycles. The grey areas are floating ice shelves. (PDF 48 kb)

Supplementary Data 1a

This gives δD data against depth, as shown in Figure 1a of the main paper. Ages are also given, showing the age-depth relationship used. (XLS 67 kb)

Supplementary Data 1b

This gives grain radius against depth, as shown in Figure 1b of the main paper. (XLS 29 kb)

Supplementary Data 1c

This gives dust mass against depth, as shown in Figure 1c of the main paper. (XLS 55 kb)

Supplementary Data 1d

This gives electrical data against depth, as shown in Fig 1d of the main paper. (XLS 235 kb)

Supplementary Data 2b

This gives 3 kyr average δD values against age for the EDC core, as shown in Figure 2b of the main paper. (XLS 23 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

EPICA community members. Eight glacial cycles from an Antarctic ice core. Nature 429, 623–628 (2004). https://doi.org/10.1038/nature02599

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/nature02599

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing