close this message
arXiv smileybones

arXiv Is Hiring a DevOps Engineer

Work on one of the world's most important websites and make an impact on open science.

View Jobs
Skip to main content
Cornell University

arXiv Is Hiring a DevOps Engineer

View Jobs
We gratefully acknowledge support from the Simons Foundation, member institutions, and all contributors. Donate
arxiv logo > math > arXiv:2505.22594

Help | Advanced Search

arXiv logo
Cornell University Logo

quick links

  • Login
  • Help Pages
  • About

Mathematics > Statistics Theory

arXiv:2505.22594 (math)
[Submitted on 28 May 2025]

Title:GLAMP: An Approximate Message Passing Framework for Transfer Learning with Applications to Lasso-based Estimators

Authors:Longlin Wang, Yanke Song, Kuanhao Jiang, Pragya Sur
View a PDF of the paper titled GLAMP: An Approximate Message Passing Framework for Transfer Learning with Applications to Lasso-based Estimators, by Longlin Wang and 3 other authors
View PDF
Abstract:Approximate Message Passing (AMP) algorithms enable precise characterization of certain classes of random objects in the high-dimensional limit, and have found widespread applications in fields such as statistics, deep learning, genetics, and communications. However, existing AMP frameworks cannot simultaneously handle matrix-valued iterates and non-separable denoising functions. This limitation prevents them from precisely characterizing estimators that draw information from multiple data sources with distribution shifts. In this work, we introduce Generalized Long Approximate Message Passing (GLAMP), a novel extension of AMP that addresses this limitation. We rigorously prove state evolution for GLAMP. GLAMP significantly broadens the scope of AMP, enabling the analysis of transfer learning estimators that were previously out of reach. We demonstrate the utility of GLAMP by precisely characterizing the risk of three Lasso-based transfer learning estimators: the Stacked Lasso, the Model Averaging Estimator, and the Second Step Estimator. We also demonstrate the remarkable finite sample accuracy of our theory via extensive simulations.
Comments: 104 pages, 3 figures
Subjects: Statistics Theory (math.ST); Machine Learning (stat.ML)
Cite as: arXiv:2505.22594 [math.ST]
  (or arXiv:2505.22594v1 [math.ST] for this version)
  https://doi.org/10.48550/arXiv.2505.22594
arXiv-issued DOI via DataCite (pending registration)

Submission history

From: Yanke Song [view email]
[v1] Wed, 28 May 2025 17:05:09 UTC (150 KB)
Full-text links:

Access Paper:

    View a PDF of the paper titled GLAMP: An Approximate Message Passing Framework for Transfer Learning with Applications to Lasso-based Estimators, by Longlin Wang and 3 other authors
  • View PDF
  • TeX Source
  • Other Formats
view license
Current browse context:
math.ST
< prev   |   next >
new | recent | 2025-05
Change to browse by:
math
stat
stat.ML
stat.TH

References & Citations

  • NASA ADS
  • Google Scholar
  • Semantic Scholar
a export BibTeX citation Loading...

BibTeX formatted citation

×
Data provided by:

Bookmark

BibSonomy logo Reddit logo

Bibliographic and Citation Tools

Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)

Code, Data and Media Associated with this Article

alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)

Demos

Replicate (What is Replicate?)
Hugging Face Spaces (What is Spaces?)
TXYZ.AI (What is TXYZ.AI?)

Recommenders and Search Tools

Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
  • Author
  • Venue
  • Institution
  • Topic

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.

Which authors of this paper are endorsers? | Disable MathJax (What is MathJax?)
  • About
  • Help
  • contact arXivClick here to contact arXiv Contact
  • subscribe to arXiv mailingsClick here to subscribe Subscribe
  • Copyright
  • Privacy Policy
  • Web Accessibility Assistance
  • arXiv Operational Status
    Get status notifications via email or slack