Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1998 Jun;152(6):1549–1561.

TRAF-4 expression in epithelial progenitor cells. Analysis in normal adult, fetal, and tumor tissues.

M Krajewska 1, S Krajewski 1, J M Zapata 1, T Van Arsdale 1, R D Gascoyne 1, K Berern 1, D McFadden 1, A Shabaik 1, J Hugh 1, A Reynolds 1, C V Clevenger 1, J C Reed 1
PMCID: PMC1858434  PMID: 9626059

Abstract

TRAF-4 was discovered because of its expression in breast cancers and is a member of the tumor necrosis factor (TNF) receptor-associated factor (TRAF) family of putative signal-transducing proteins. In vitro binding assays demonstrated that TRAF-4 interacts with the cytosolic domain of the lymphotoxin-beta receptor (LT beta R) and weakly with the p75 nerve growth factor receptor (NGFR) but not with TNFR1, TNFR2, Fas, or CD40. Immunofluorescence analysis of TRAF-4 in transfected cells demonstrated localization to cytosol but not nucleus. Immunohistochemical assays of normal human adult tissues revealed prominent cytosolic immunostaining in thymic epithelial cells and lymph node dendritic cells but not in lymphocytes or thymocytes, paralleling the reported patterns of LT beta R expression. The basal cell layer of most epithelia in the body was very strongly TRAF-4 immunopositive, including epidermis, nasopharynx, respiratory tract, salivary gland, and esophagus. Similar findings were obtained in 12- to 18-week human fetal tissue, indicating a highly restricted pattern of expression even during development in the mammary gland, epithelial cells of the terminal ducts were strongly TRAF-4 immunopositive whereas myoepithelial cells and most of the mammary epithelial cells lining the extralobular ducts were TRAF-4 immunonegative. Of 84 primary breast cancers evaluated, only 7 expressed TRAF-4. Ductal carcinoma in situ (DCIS) lesions were uniformly TRAF-4 immunonegative (n = 21). In the prostate, the basal cells were strongly immunostained for TRAF-4, whereas the secretory epithelial cells were TRAF-4 negative. Basal cells in prostate hypertrophy (n = 6) and prostatic intraepithelial neoplasia (PIN; n = 6) were strongly TRAF-4 positive, but none of the 32 primary and 16 metastatic prostate cancer specimens examined contained TRAF-4-positive malignant cells. Although also expressed in some types of mesenchymal cells, these findings suggest that TRAF-4 is a marker of normal epithelial stem cells, the expression of which often ceases on differentiation and malignant transformation.

Full text

PDF
1549

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bazzoni F., Beutler B. The tumor necrosis factor ligand and receptor families. N Engl J Med. 1996 Jun 27;334(26):1717–1725. doi: 10.1056/NEJM199606273342607. [DOI] [PubMed] [Google Scholar]
  2. Chiu A. Y., Chen E. W., Loera S. A motor neuron-specific epitope and the low-affinity nerve growth factor receptor display reciprocal patterns of expression during development, axotomy, and regeneration. J Comp Neurol. 1993 Feb 15;328(3):351–363. doi: 10.1002/cne.903280303. [DOI] [PubMed] [Google Scholar]
  3. De Togni P., Goellner J., Ruddle N. H., Streeter P. R., Fick A., Mariathasan S., Smith S. C., Carlson R., Shornick L. P., Strauss-Schoenberger J. Abnormal development of peripheral lymphoid organs in mice deficient in lymphotoxin. Science. 1994 Apr 29;264(5159):703–707. doi: 10.1126/science.8171322. [DOI] [PubMed] [Google Scholar]
  4. Devergne O., Hatzivassiliou E., Izumi K. M., Kaye K. M., Kleijnen M. F., Kieff E., Mosialos G. Association of TRAF1, TRAF2, and TRAF3 with an Epstein-Barr virus LMP1 domain important for B-lymphocyte transformation: role in NF-kappaB activation. Mol Cell Biol. 1996 Dec;16(12):7098–7108. doi: 10.1128/mcb.16.12.7098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Eliopoulos A. G., Dawson C. W., Mosialos G., Floettmann J. E., Rowe M., Armitage R. J., Dawson J., Zapata J. M., Kerr D. J., Wakelam M. J. CD40-induced growth inhibition in epithelial cells is mimicked by Epstein-Barr Virus-encoded LMP1: involvement of TRAF3 as a common mediator. Oncogene. 1996 Nov 21;13(10):2243–2254. [PubMed] [Google Scholar]
  6. Ishida T., Mizushima S. i., Azuma S., Kobayashi N., Tojo T., Suzuki K., Aizawa S., Watanabe T., Mosialos G., Kieff E. Identification of TRAF6, a novel tumor necrosis factor receptor-associated factor protein that mediates signaling from an amino-terminal domain of the CD40 cytoplasmic region. J Biol Chem. 1996 Nov 15;271(46):28745–28748. doi: 10.1074/jbc.271.46.28745. [DOI] [PubMed] [Google Scholar]
  7. Koni P. A., Sacca R., Lawton P., Browning J. L., Ruddle N. H., Flavell R. A. Distinct roles in lymphoid organogenesis for lymphotoxins alpha and beta revealed in lymphotoxin beta-deficient mice. Immunity. 1997 Apr;6(4):491–500. doi: 10.1016/s1074-7613(00)80292-7. [DOI] [PubMed] [Google Scholar]
  8. Krajewska M., Krajewski S., Epstein J. I., Shabaik A., Sauvageot J., Song K., Kitada S., Reed J. C. Immunohistochemical analysis of bcl-2, bax, bcl-X, and mcl-1 expression in prostate cancers. Am J Pathol. 1996 May;148(5):1567–1576. [PMC free article] [PubMed] [Google Scholar]
  9. Krajewski S., Zapata J. M., Krajewska M., VanArsdale T., Shabaik A., Gascoyne R. D., Reed J. C. Immunohistochemical analysis of in vivo patterns of TRAF-3 expression, a member of the TNF receptor-associated factor family. J Immunol. 1997 Dec 15;159(12):5841–5852. [PubMed] [Google Scholar]
  10. Lee S. Y., Lee S. Y., Kandala G., Liou M. L., Liou H. C., Choi Y. CD30/TNF receptor-associated factor interaction: NF-kappa B activation and binding specificity. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9699–9703. doi: 10.1073/pnas.93.18.9699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Liu Y. J., Banchereau J. Mutant mice without B lymphocyte follicles. J Exp Med. 1996 Oct 1;184(4):1207–1211. doi: 10.1084/jem.184.4.1207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Matsumoto M., Lo S. F., Carruthers C. J., Min J., Mariathasan S., Huang G., Plas D. R., Martin S. M., Geha R. S., Nahm M. H. Affinity maturation without germinal centres in lymphotoxin-alpha-deficient mice. Nature. 1996 Aug 1;382(6590):462–466. doi: 10.1038/382462a0. [DOI] [PubMed] [Google Scholar]
  13. Matsumoto M., Mariathasan S., Nahm M. H., Baranyay F., Peschon J. J., Chaplin D. D. Role of lymphotoxin and the type I TNF receptor in the formation of germinal centers. Science. 1996 Mar 1;271(5253):1289–1291. doi: 10.1126/science.271.5253.1289. [DOI] [PubMed] [Google Scholar]
  14. Mosialos G., Birkenbach M., Yalamanchili R., VanArsdale T., Ware C., Kieff E. The Epstein-Barr virus transforming protein LMP1 engages signaling proteins for the tumor necrosis factor receptor family. Cell. 1995 Feb 10;80(3):389–399. doi: 10.1016/0092-8674(95)90489-1. [DOI] [PubMed] [Google Scholar]
  15. Nagata S. Fas-induced apoptosis, and diseases caused by its abnormality. Genes Cells. 1996 Oct;1(10):873–879. doi: 10.1046/j.1365-2443.1996.d01-214.x. [DOI] [PubMed] [Google Scholar]
  16. Nakano H., Oshima H., Chung W., Williams-Abbott L., Ware C. F., Yagita H., Okumura K. TRAF5, an activator of NF-kappaB and putative signal transducer for the lymphotoxin-beta receptor. J Biol Chem. 1996 Jun 21;271(25):14661–14664. doi: 10.1074/jbc.271.25.14661. [DOI] [PubMed] [Google Scholar]
  17. Page K. J., Everitt B. J. The distribution of neurons coexpressing immunoreactivity to AMPA-sensitive glutamate receptor subtypes (GluR1-4) and nerve growth factor receptor in the rat basal forebrain. Eur J Neurosci. 1995 May 1;7(5):1022–1033. doi: 10.1111/j.1460-9568.1995.tb01090.x. [DOI] [PubMed] [Google Scholar]
  18. Perez M., Regan T., Pflug B., Lynch J., Djakiew D. Loss of low-affinity nerve growth factor receptor during malignant transformation of the human prostate. Prostate. 1997 Mar 1;30(4):274–279. doi: 10.1002/(sici)1097-0045(19970301)30:4<274::aid-pros8>3.0.co;2-l. [DOI] [PubMed] [Google Scholar]
  19. Pflug B. R., Dionne C., Kaplan D. R., Lynch J., Djakiew D. Expression of a Trk high affinity nerve growth factor receptor in the human prostate. Endocrinology. 1995 Jan;136(1):262–268. doi: 10.1210/endo.136.1.7828539. [DOI] [PubMed] [Google Scholar]
  20. Pincelli C., Fantini F., Giannetti A. Nerve growth factor and the skin. Int J Dermatol. 1994 May;33(5):308–312. doi: 10.1111/j.1365-4362.1994.tb01058.x. [DOI] [PubMed] [Google Scholar]
  21. Rabizadeh S., Oh J., Zhong L. T., Yang J., Bitler C. M., Butcher L. L., Bredesen D. E. Induction of apoptosis by the low-affinity NGF receptor. Science. 1993 Jul 16;261(5119):345–348. doi: 10.1126/science.8332899. [DOI] [PubMed] [Google Scholar]
  22. Redd P. E., Byers M. R. Regeneration of junctional epithelium and its innervation in adult rats: a study using immunocytochemistry for p75 nerve growth factor receptor and calcitonin gene-related peptide. J Periodontal Res. 1994 May;29(3):214–224. doi: 10.1111/j.1600-0765.1994.tb01215.x. [DOI] [PubMed] [Google Scholar]
  23. Reynolds C., Montone K. T., Powell C. M., Tomaszewski J. E., Clevenger C. V. Expression of prolactin and its receptor in human breast carcinoma. Endocrinology. 1997 Dec;138(12):5555–5560. doi: 10.1210/endo.138.12.5605. [DOI] [PubMed] [Google Scholar]
  24. Rothe M., Wong S. C., Henzel W. J., Goeddel D. V. A novel family of putative signal transducers associated with the cytoplasmic domain of the 75 kDa tumor necrosis factor receptor. Cell. 1994 Aug 26;78(4):681–692. doi: 10.1016/0092-8674(94)90532-0. [DOI] [PubMed] [Google Scholar]
  25. Russo J., Calaf G., Roi L., Russo I. H. Influence of age and gland topography on cell kinetics of normal human breast tissue. J Natl Cancer Inst. 1987 Mar;78(3):413–418. [PubMed] [Google Scholar]
  26. Régnier C. H., Tomasetto C., Moog-Lutz C., Chenard M. P., Wendling C., Basset P., Rio M. C. Presence of a new conserved domain in CART1, a novel member of the tumor necrosis factor receptor-associated protein family, which is expressed in breast carcinoma. J Biol Chem. 1995 Oct 27;270(43):25715–25721. doi: 10.1074/jbc.270.43.25715. [DOI] [PubMed] [Google Scholar]
  27. Sato T., Irie S., Reed J. C. A novel member of the TRAF family of putative signal transducing proteins binds to the cytosolic domain of CD40. FEBS Lett. 1995 Jan 23;358(2):113–118. doi: 10.1016/0014-5793(94)01406-q. [DOI] [PubMed] [Google Scholar]
  28. Tomasetto C., Régnier C., Moog-Lutz C., Mattei M. G., Chenard M. P., Lidereau R., Basset P., Rio M. C. Identification of four novel human genes amplified and overexpressed in breast carcinoma and localized to the q11-q21.3 region of chromosome 17. Genomics. 1995 Aug 10;28(3):367–376. doi: 10.1006/geno.1995.1163. [DOI] [PubMed] [Google Scholar]
  29. VanArsdale T. L., VanArsdale S. L., Force W. R., Walter B. N., Mosialos G., Kieff E., Reed J. C., Ware C. F. Lymphotoxin-beta receptor signaling complex: role of tumor necrosis factor receptor-associated factor 3 recruitment in cell death and activation of nuclear factor kappaB. Proc Natl Acad Sci U S A. 1997 Mar 18;94(6):2460–2465. doi: 10.1073/pnas.94.6.2460. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES