ESD Earth System Dynamics ESD Earth Syst. Dynam. 2190-4987 Copernicus Publications Göttingen, Germany 10.5194/esd-4-287-2013 Consistent increase in Indian monsoon rainfall and its variability across CMIP-5 models Menon A. 1 2 Levermann A. https://orcid.org/0000-0003-4432-4704 1 2 Schewe J. 1 Lehmann J. https://orcid.org/0000-0003-3261-6750 1 2 Frieler K. 1 Potsdam Institute for Climate Impact Research, 14473 Potsdam, Germany Institute of Physics, University of Potsdam, 14476 Potsdam, Germany 28 08 2013 4 2 287 300 Copyright: © 2013 A. Menon et al. 2013 This work is licensed under the Creative Commons Attribution 3.0 Unported License. To view a copy of this licence, visit https://creativecommons.org/licenses/by/3.0/ This article is available from https://esd.copernicus.org/articles/4/287/2013/esd-4-287-2013.html The full text article is available as a PDF file from https://esd.copernicus.org/articles/4/287/2013/esd-4-287-2013.pdf

The possibility of an impact of global warming on the Indian monsoon is of critical importance for the large population of this region. Future projections within the Coupled Model Intercomparison Project Phase 3 (CMIP-3) showed a wide range of trends with varying magnitude and sign across models. Here the Indian summer monsoon rainfall is evaluated in 20 CMIP-5 models for the period 1850 to 2100. In the new generation of climate models, a consistent increase in seasonal mean rainfall during the summer monsoon periods arises. All models simulate stronger seasonal mean rainfall in the future compared to the historic period under the strongest warming scenario RCP-8.5. Increase in seasonal mean rainfall is the largest for the RCP-8.5 scenario compared to other RCPs. Most of the models show a northward shift in monsoon circulation by the end of the 21st century compared to the historic period under the RCP-8.5 scenario. The interannual variability of the Indian monsoon rainfall also shows a consistent positive trend under unabated global warming. Since both the long-term increase in monsoon rainfall as well as the increase in interannual variability in the future is robust across a wide range of models, some confidence can be attributed to these projected trends.

References Ashfaq, M., Shi, Y., Tung, W., Trapp, R. J., Gao, X., Pal, J. S., and Diffenbaugh, N. S.: Suppression of south Asian summer monsoon precipitation in the 21st century, Geophys. Res. Lett., 36, L01704, <a href="http://dx.doi.org/10.1029/2008GL036500">https://doi.org/10.1029/2008GL036500</a>, 2009. Auffhammer, M., Ramanathan, V., and Vincent, J. R.: Integrated model shows that atmospheric brown clouds and greenhouse gases have reduced rice harvests in India, P. Natl. Acad. Sci., 103, 19668–19672, 2006. Burns, S., Fleitmann, D., Mudelsee, M., Neff, U., Matter, A., and Mangini, A.: A 780-year annually resolved record of Indian Ocean monsoon precipitation from a speleothem from south Oman, J. Geophys. Res., 107, 4434, <a href="http://dx.doi.org/10.1029/2001JD001281">https://doi.org/10.1029/2001JD001281</a>, 2002. Cherchi, A., Alessandri, A., Masina, S., and Navarra, A.: Effects of increased CO<sub>2</sub> levels on monsoons, Clim. Dynam., 37, 83–101, <a href="http://dx.doi.org/10.1007/s00382-010-0801-7">https://doi.org/10.1007/s00382-010-0801-7</a>, 2011. Cook, E. R., Anchukaitis, K. J., Buckley, B. M., Di Arrigo, R. D., Jacoby, G. C., and Wright, W. E.: Asian Monsoon Failure and Megadrought During the Last Millennium, Science, 328, 486–439, 2010. Cubasch, U., Meehl, G., Boer, G., Stouffer, R., Dix, M., Noda, A., Senior, C., Raper, S., and Yap, K.: Projections of future climate change, in: Climate Change 2001: The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel, edited by: Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., Van der Linden, P. J., Dai, X., Maskell, K., and Johnson, C. A., Cambridge University Press, UK, 526–582, 2001. Duan, K., Yao, T., and Thompson, L.: Low-frequency of southern Asian monsoon variability using a 295-year record from the Dasuopu ice core in the central Himalayas, Geophys. Res. Lett., 31, L16209, <a href="http://dx.doi.org/10.1029/2004GL020015">https://doi.org/10.1029/2004GL020015</a>, 2004. Fan, F., Mann, M. E., Lee, S., and Evans, J. L: Future changes in the south Asian summer monsoon: An analysis of the CMIP3 multi-model projections, J. Climate, 25, 3909–3928, 2012. Frieler, K., Meinshausen, M., von Deimling, T., Andrews, T., and Forster, P.: Changes in global-mean precipitation in response to warming, greenhouse gas forcing and black carbon, Geophys. Res. Lett., 38, L04702, <a href="http://dx.doi.org/10.1029/2010GL045953">https://doi.org/10.1029/2010GL045953</a>, 2011. Fu, C., Diaz, H., Dong, D., and Fletcher, J.: Changes in atmospheric circulation over Northern Hemisphere oceans associated with the rapid warming of the 1920s, Int. J. Climatol., 19, 581–606, 1999. Goswami, B. N.: Interannual variations of Indian summer monsoon in a GCM: External conditions versus internal feedbacks, J. Climate, 11, 501–522, 1998. Goswami, B. N., Venugopal, V., Sengupta, D., Madhusoodanan, M. S., and Xavier, P. K.: Increasing Trend of Extreme Rain Events Over India in a Warming Environment, Science, 314, 1442–1445, 2006. Guhathakurta, P. and Rajeevan, M.: Trends in the rainfall pattern over India, Int. J. Climatol., 28, 1453–1469, 2008. Hsu, P.-C., Li, T., Murakami, H., and Kitoh, A.: Future change of the global monsoon revealed from 19 CMIP5 models, J. Geophys. Res.-Atmos., 118, 1–14, <a href="http://dx.doi.org/10.1002/jgrd.50145">https://doi.org/10.1002/jgrd.50145</a>, 2013. Hu, Z., Latif, M., Roeckner, E., and Bengtsson, L.: Intensified Asian summer monsoon and its variability in a coupled model forced by increasing greenhouse gas concentrations, Geophys. Res. Lett., 27, 2681, <a href="http://dx.doi.org/10.1029/2000GL011550">https://doi.org/10.1029/2000GL011550</a>, 2000. Jagannathan, P. and Parthasarathy, B.: Trends and periodicities of rainfall over India, Mon. Weather Rev., 101, 371–375, 1973. Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D.: The NCEP/NCAR 40-Year Reanalysis Project, B. Am. Meteorol. Soc., 77, 437–471, 1996. Kitoh, A., Yukimoto, S., Noda, A., and Motoi, T.: Simulated changes in the Asian summer monsoon at times of increased atmospheric CO<sub>2</sub>, J. Meteorol. Soc. Jpn., 75, 1019–1031, 1997. Kripalani, R., Kulkarni, A., Sabade, S., and Khandekar, M.: Indian monsoon variability in a global warming scenario, Nat. Hazards, 29, 189–206, 2003. Kripalani, R. H., Oh, J. H., Kulkarni, A., Sabade, S. S., and Chaudhari, H. S.: South Asian summer monsoon precipitation variability: Coupled climate model simulations and projections under IPCC AR4, Theor. Appl. Climatol., 90, 133–159, <a href="http://dx.doi.org/10.1007/s00704-006-0282-0">https://doi.org/10.1007/s00704-006-0282-0</a>, 2007. Kucharski, F., Scaife, A. A., Yoo, J. H., Folland, C. K., Kinter, J., Knight, J., Fereday, D., Fischer, A. M., Jin, E. K., Kröger, J., Lau, N.-C., Nakaegawa, T., Nath, M. J., Pegion, P., Rozanov, E., Schubert, S., Sporyshev, P. V., Syktus, J., Voldoire, A., Yoon, J. H., Zeng, N., Zhou, T.: The CLIVAR C20C project: skill of simulating Indian monsoon rainfall on interannual to decadal timescales. Does GHG forcing play a role?, Clim. Dynam., 33, 615–627, 2009. Kumar, K., Pant, G., Parthasarathy, B., and Sontakke, N.: Spatial and subseasonal patterns of the long-term trends of Indian summer monsoon rainfall, Int. J. Climatol., 12, 257–268, 1992. Lal, M., Cubasch, U., and Santer, B.: Effect of global warming on Indian monsoon simulated with a coupled ocean-atmosphere general circulation model, Current Sci., 66, 430–438, 1994. Lal, M., Cubasch, U., Voss, R., and Waszkewitz, J.: Effect of transient increase in greenhouse gases and sulphate aerosols on monsoon climate, Current Sci., 69, 752–763, 1995. Lal, M., Nozawa, T., Emori, S., Harasawa, H., Takahashi, K., Kimoto, M., Abe-Ouchi, A., Nakajima, T., Takemura, T., and Numaguti, A.: Future climate change: Implications for Indian summer monsoon and its variability, Current Sci., 81, 1196–1207, 2001. Lee, J.-Y. and Wang, B.: Future change of global monsoon in the CMIP5, Clim. Dynam., 39, 1123–1135, 2012. Levermann, A., Schewe, J., Petoukhov, V., and Held, H.: Basic mechanism for abrupt monsoon transitions, P. Natl. Acad. Sci., 106, 20572–20577, 2009. Mahfouf, J., Cariolle, D., Royer, J., Geleyn, J., and Timbal, B.: Response of the Meteo-France climate model to changes in CO<sub>2</sub> and sea surface temperature, Clim. Dynam., 9, 345–362, 1994. May, W.: Simulated changes of the Indian summer monsoon under enhanced greenhouse gas conditions in a global time-slice experiment, Geophys. Res. Lett., 29, 1118, <a href="http://dx.doi.org/10.1029/2001GL013808">https://doi.org/10.1029/2001GL013808</a>, 2002. Meehl, G. A. and Arblaster, J. M.: Mechanisms for projected future changes in south Asian monsoon precipitation, Clim. Dynam., 21, 659–675, 2003. Meehl, G. A. and Washington, W. M.: South Asian Summer Monsoon Variability in a Model with Doubled Atmospheric Carbon Dioxide Concentration, Science, 260, 1101–1104, 1993. Meehl, G. A., Arblaster, J. M., and Tebaldi, C.: Understanding future patterns of increased precipitation intensity in climate model simulations, Geophys. Res. Lett., 32, L18719, <a href="http://dx.doi.org/10.1029/2005GL023680">https://doi.org/10.1029/2005GL023680</a>, 2005. Meehl, G. A., Stocker, T. F., Collins, W. D., Friedlingstein, P., Gaye, A. T., Gregory, J. M., Kitoh, A., Knutti, R., Murphy, J. M., Noda, A., Raper, S. C. B., Watterson, I. G., Weaver, A. J., and Zhao, Z.-C.: Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, chap. Global Climate Projections, Cambridge University Press, Cambridge, UK and New York, NY, USA, 2007. Meehl, G. A., Arblaster, J. M., and Collins, W. D.: Effects of black carbon aerosols on the Indian monsoon, J. Climate, 21, 2869–2882, 2008. Menon, A., Levermann, A., and Schewe, J.: Enhanced future variability during India's rainy season, Geophys. Res. Lett., 40, 3242–3247, <a href="http://dx.doi.org/10.1002/grl.50583">https://doi.org/10.1002/grl.50583</a>, 2013. Mooley, D. and Parthasarathy, B.: Fluctuations in All-India summer monsoon rainfall during 1871–1978, Climatic Change, 6, 287–301, 1984. Moore, J., Grinsted, A., and Jevrejeva, S.: New tools for analyzing time series relationships and trends, EOS Trans. Am. Geophys. Union, 86, 226, 2005. Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., van Vuuren, D. P., Carter, T. R., Emori, S., Kainuma, M., Kram, T., Meehl, G. A., Mitchell, J. F. B., Nakicenovic, N., Riahi, K., Smith, S. J., Stouffer, R. J., Thomson, A. M., Weyant, J. P., and Wilbanks, T. J.: The next generation of scenarios for climate change research and assessment, Nature, 463, 747–756, 2010. Parthasarathy, B., Munot, A., and Kothawale, D.: Regression model for estimation of Indian foodgrain production from summer monsoon rainfall, Agr. Forest Meteorol., 42, 167–182, <a href="http://dx.doi.org/10.1016/0168-1923(88)90075-5">https://doi.org/10.1016/0168-1923(88)90075-5</a>, 1988. Parthasarathy, B., Munot, A., and Kothawale, D.: All-India monthly and seasonal rainfall series: 1871–1993, Theor. Appl. Climatol., 49, 217–224, 1994. Rajeevan, M., Bhate, J., Kale, J. A., and Lal, B.: High resolution daily gridded rainfall data for the Indian region: Analysis of break and active monsoon spells, Current Sci., 91, 296–306, 2006. Ramanathan, V., Chung, C., Kim, D., Bettge, T., Kiehl, J. T., Washington, W. M., Fu, Q., Sikka, D. R., and Wild, M.: Atmospheric brown clouds: Impacts on South Asian climate and hydrological cycle, P. Natl. Acad. Sci., 102, 5326–5333, 2005. Sabade, S., Kulkarni, A., and Kripalani, R.: Projected changes in South Asian summer monsoon by multi-model global warming experiments, Theor. Appl. Climatol., 103, 543–565, 2011. Schewe, J. and Levermann, A.: A statistically predictive model for future monsoon failure in India, Environ. Res. Lett., 7, 044023, <a href="http://dx.doi.org/10.1088/1748-9326/7/4/044023">https://doi.org/10.1088/1748-9326/7/4/044023</a>, 2012. Schewe, J., Levermann, A., and Meinshausen, M.: Climate change under a scenario near 1.5 °C of global warming: monsoon intensification, ocean warming and steric sea level rise, Earth Syst. Dynam., 2, 25–35, <a href="http://dx.doi.org/10.5194/esd-2-25-2011">https://doi.org/10.5194/esd-2-25-2011</a>, 2011. Schewe, J., Levermann, A., and Cheng, H.: A critical humidity threshold for monsoon transitions, Clim. Past, 8, 535–544, <a href="http://dx.doi.org/10.5194/cp-8-535-2012">https://doi.org/10.5194/cp-8-535-2012</a>, 2012. Sinha, A., Berkelhammer, M., Stott, L., Mudelsee, M., Cheng, H., and Biswas, J.: The leading mode of Indian Summer Monsoon precipitation variability during the last millennium, Geophys. Res. Lett., 38, L15703, <a href="http://dx.doi.org/10.1029/2011GL047713">https://doi.org/10.1029/2011GL047713</a>, 2011. Sperber, K. and Palmer, T.: Interannual tropical rainfall variability in general circulation model simulations associated with the Atmospheric Model Intercomparison Project, J. Climate, 9, 2727–2750, 1996. Sperber, K. R., Annamalai, H., Kang, I.-S., Kitoh, A., Moise, A., Turner, A., Wang, B., and Zhou, T.: The Asian summer monsoon: an intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century, Clim. Dynam., <a href="http://dx.doi.org/10.1007/s00382-012-1607-6">https://doi.org/10.1007/s00382-012-1607-6</a>, in press, 2012. Tanaka, H., Ishizaki, N., and Nohara, D.: Intercomparison of the intensities and trends of Hadley, Walker and monsoon circulations in the global warming projections, SOLA, 1, 77–80, 2005. Thompson, L., Yao, T., Mosley-Thompson, E., Davis, M., Henderson, K., and Lin, P.: A high-resolution millennial record of the South Asian monsoon from Himalayan ice cores, Science, 289, 1916–1919, 2000. Timbal, B., Mahfouf, J., Royer, J., and Cariolle, D.: Sensitivity to prescribed changes in sea surface temperature and sea ice in doubled carbon dioxide experiments, Clim. Dynam., 12, 1–20, 1995. Trenberth, K.: Atmospheric moisture residence times and cycling: Implications for rainfall rates and climate change, Climatic Change, 39, 667–694, 1998. Turner, A. and Annamalai, H.: Climate change and the South Asian summer monsoon, Nat. Clim. Change, 2, 587–595, 2012. Ueda, H., Iwai, A., Kuwako, K., and Hori, M.: Impact of anthropogenic forcing on the Asian summer monsoon as simulated by eight GCMs, Geophys. Res. Lett., 33, L06703, <a href="http://dx.doi.org/10.1029/2005GL025336">https://doi.org/10.1029/2005GL025336</a>, 2006. Webster, P.: Response of the tropical atmosphere to local, steady forcing, Mon. Weather Rev., 100, 518–541, 1972. Xu, H., Hong, Y., and Hong, B.: Decreasing Asian summer monsoon intensity after 1860 AD in the global warming epoch, Clim. Dynam., 39, 2079–2088, <a href="http://dx.doi.org/10.1007/s00382-012-1378-0">https://doi.org/10.1007/s00382-012-1378-0</a>, 2012. Zhao, Z. and Kellogg, W.: Sensitivity of soil moisture to doubling of carbon dioxide in climate model experiments, Part II: The Asian monsoon region, J. Climte, 1, 367–378, <a href="http://dx.doi.org/10.1175/1520-0442(1988)001<0367:SOSMTD>2.0.CO;2">https://doi.org/10.1175/1520-0442(1988)001<0367:SOSMTD>2.0.CO;2</a>, 1988. Zickfeld, K., Knopf, B., Petoukhov, V., and Schellnhuber, H. J.: Is the Indian summer monsoon stable against global change?, Geophys. Res. Lett., 32, L15707, <a href="http://dx.doi.org/10.1029/2005GL022771">https://doi.org/10.1029/2005GL022771</a>, 2005.