Skip to content

Feature names unseen at fit time #722

Open
@yiannis-gkoufas

Description

@yiannis-gkoufas

Hi!

I want to use mljar for binary classification (category1+category2).
The parameters I am passing to AutoML are the following:

automl = AutoML(results_path=str(model_directory),
                            mode="Compete",
                            total_time_limit=600 * 600,
                            golden_features=True,
                            features_selection=True,
                            ml_task="binary_classification")

In the params.json I see "best_model": "Ensemble_Stacked"
When I try to run a prediction I get:

Feature names unseen at fit time:
- 100_LightGBM_GoldenFeatures_prediction
- 101_LightGBM_GoldenFeatures_prediction
- 103_LightGBM_GoldenFeatures_prediction
- 105_Xgboost_prediction
- 108_CatBoost_prediction
- ...
Feature names seen at fit time, yet now missing:
- 100_LightGBM_GoldenFeatures_prediction_0_for_category1_1_for_category2
- 101_LightGBM_GoldenFeatures_prediction_0_for_category1_1_for_category2
- 103_LightGBM_GoldenFeatures_prediction_0_for_category1_1_for_category2
- 105_Xgboost_prediction_0_for_category1_1_for_category2
- 108_CatBoost_prediction_0_for_category1_1_for_category2

Any help would be appreciated!

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions