HESS Hydrology and Earth System Sciences HESS Hydrol. Earth Syst. Sci. 1607-7938 Copernicus Publications Göttingen, Germany 10.5194/hess-19-389-2015 ERA-Interim/Land: a global land surface reanalysis data set Balsamo G. https://orcid.org/0000-0002-1745-3634 1 Albergel C. https://orcid.org/0000-0003-1095-2702 1 Beljaars A. 1 Boussetta S. 1 Brun E. 2 Cloke H. https://orcid.org/0000-0002-1472-868X 3 Dee D. 1 Dutra E. https://orcid.org/0000-0002-0643-2643 1 Muñoz-Sabater J. https://orcid.org/0000-0002-5997-290X 1 Pappenberger F. https://orcid.org/0000-0003-1766-2898 1 de Rosnay P. https://orcid.org/0000-0002-7374-3820 1 Stockdale T. 1 Vitart F. 1 European Centre for Medium-Range Weather Forecasts (ECMWF), Reading, UK Météo-France, Toulouse, France University of Reading, Reading, UK 21 01 2015 19 1 389 407 Copyright: © 2015 G. Balsamo et al. 2015 This work is licensed under the Creative Commons Attribution 3.0 Unported License. To view a copy of this licence, visit https://creativecommons.org/licenses/by/3.0/ This article is available from https://hess.copernicus.org/articles/19/389/2015/hess-19-389-2015.html The full text article is available as a PDF file from https://hess.copernicus.org/articles/19/389/2015/hess-19-389-2015.pdf

ERA-Interim/Land is a global land surface reanalysis data set covering the period 1979–2010. It describes the evolution of soil moisture, soil temperature and snowpack. ERA-Interim/Land is the result of a single 32-year simulation with the latest ECMWF (European Centre for Medium-Range Weather Forecasts) land surface model driven by meteorological forcing from the ERA-Interim atmospheric reanalysis and precipitation adjustments based on monthly GPCP v2.1 (Global Precipitation Climatology Project). The horizontal resolution is about 80 km and the time frequency is 3-hourly. ERA-Interim/Land includes a number of parameterization improvements in the land surface scheme with respect to the original ERA-Interim data set, which makes it more suitable for climate studies involving land water resources. The quality of ERA-Interim/Land is assessed by comparing with ground-based and remote sensing observations. In particular, estimates of soil moisture, snow depth, surface albedo, turbulent latent and sensible fluxes, and river discharges are verified against a large number of site measurements. ERA-Interim/Land provides a global integrated and coherent estimate of soil moisture and snow water equivalent, which can also be used for the initialization of numerical weather prediction and climate models.

References Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P., Janowiak, J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind, J., Arkin, P., and Nelkin, E. J.: The Version 2.1 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–Present), J. Hydrometeorol., 4, 1147–1167, 2003. Agust\`i-Panareda, A., Balsamo, G., and Beljaars, A.: Impact of improved soil moisture on the ECMWF precipitation forecast in West Africa, Geophys. Res. Lett., 37, L20808, <a href="http://dx.doi.org/10.1029/2010GL044748">https://doi.org/10.1029/2010GL044748</a>, 2010. Albergel, C., Rüdiger, C., Pellarin, T., Calvet, J.-C., Fritz, N., Froissard, F., Suquia, D., Petitpa, A., Piguet, B., and Martin, E.: From near-surface to root-zone soil moisture using an exponential filter: an assessment of the method based on in-situ observations and model simulations, Hydrol. Earth Syst. Sci., 12, 1323–1337, <a href="http://dx.doi.org/10.5194/hess-12-1323-2008">https://doi.org/10.5194/hess-12-1323-2008</a>, 2008. Albergel, C., Balsamo, G., de Rosnay, P., Muñoz-Sabater, J., and Boussetta, S.: A bare ground evaporation revision in the ECMWF land-surface scheme: evaluation of its impact using ground soil moisture and satellite microwave data, Hydrol. Earth Syst. Sci., 16, 3607–3620, <a href="http://dx.doi.org/10.5194/hess-16-3607-2012">https://doi.org/10.5194/hess-16-3607-2012</a>, 2012a. Albergel, C., de Rosnay, P., Balsamo, G., Isaksen, L., and Muñoz Sabater, J.: Soil moisture analyses at ECMWF: evaluation using global ground-based in-situ observations, J. Hydrometeorol., 13, 1442–1460, 2012b. Albergel, C., de Rosnay, P., Gruhier, C., Muñoz-Sabater, J., Hasenauer, S., Isaksen, L., Kerr, Y., and Wagner, W.: Evaluation of remotely sensed and modelled soil moisture products using global ground-based in situ observations, Remote Sens. Environ., 118, 215–226, <a href="http://dx.doi.org/10.1016/j.rse.2011.11.017">https://doi.org/10.1016/j.rse.2011.11.017</a>, 2012c. Albergel, C., Dorigo, W., Reichle, R. H., Balsamo, G., de Rosnay, P., Munoz-Sabater, J., Isaksen, L., de Jeu, R., and Wagner, W.: Skill and global trend analysis of soil moisture from reanalyses and microwave remote sensing, J. Hydrometeorol., 14, 1259–1277, <a href="http://dx.doi.org/10.1175/JHM-D-12-0161.1">https://doi.org/10.1175/JHM-D-12-0161.1</a>, 2013. Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X., Malhi, Y., Meyers, T., Munger, W., Oechel, W., Paw, K. T., Pilegaard, K., Schmid, H. P., Valentini, R., Verma, S., Vesala, T., Wilson, K., and Wofsy, S.: FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities, B. Am. Meteorol. Soc., 82, 2415–2434, <a href="http://dx.doi.org/10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2">https://doi.org/10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2</a>, 2001. Balsamo, G., Mahfouf, J.-F., Bélair, S., and Deblonde, G.: A land data assimilation system for soil moisture and temperature: An information content study, J. Hydrometerorol., 8, 1225–1242, 2007. Balsamo, G., Viterbo, P., Beljaars, A., van den Hurk, B., Hirschi, M., Betts, A. K., and Scipal, K.: A revised hydrology for the ECMWF model: Verification from field site to terrestrial water storage and impact in the Integrated Forecast System, J. Hydrometeorol., 10, 623–643, 2009. Balsamo, G., Boussetta, S., Lopez, P., and Ferranti, L.: Evaluation of ERA-Interim and ERA-Interim-GPCP-rescaled precipitation over the U.S.A., ERA Report Series No. 5, ECMWF, Reading, UK, 10 pp., 2010a. Balsamo, G., Pappenberger, F., Dutra, E., Viterbo, P., and van den Hurk, B.: A revised land hydrology in the ECMWF model: A step towards daily water flux prediction in a fully-closed water cycle, Hydrol. Process., 25, 1046–1054, <a href="http://dx.doi.org/10.1002/hyp.7808">https://doi.org/10.1002/hyp.7808</a>, 2010b. Balsamo, G., Boussetta, S., Dutra, E., Beljaars, A., Viterbo, P., and van den Hurk, B.: Evolution of land surface processes in the IFS, ECMWF Newslett., 127, 17–22, 2011. Balsamo, G., Salgado, R., Dutra, E., Boussetta, S., Stockdale, T., and Potes, M.: On the contribution of lakes in predicting near-surface temperature in a global weather forecasting model, Tellus A, 64, 15829, <a href="http://dx.doi.org/10.3402/tellusa.v64i0.15829">https://doi.org/10.3402/tellusa.v64i0.15829</a>, 2012. Beljaars, A., Viterbo, P., Miller, M., and Betts, A.: The anomalous rainfall over the USA during July 1993: Sensitivity to land surface parametrization and soil moisture anomalies, Mon. Weather Rev., 124, 362–383, 1996. Berrisford, P., Kallberg, P., Kobayashi, S., Dee, D., Uppala, S., Simmons, A. J., Poli, P., and Sato, H.: Atmospheric conservation properties in ERA-Interim, Q. J. Roy. Meteorol. Soc., 137, 1381–1399, <a href="http://dx.doi.org/10.1002/qj.864">https://doi.org/10.1002/qj.864</a>, 2011. Betts, A. K., Ball, J. H., Barr, A. G., Black, T. A., McCaughey, J. H., and Viterbo, P.: Assessing land surface-atmosphere coupling in the ERA-40 re-analysis with boreal forest data, Agr. Forest Meteorol., 140, 365–382, <a href="http://dx.doi.org/10.1016/j.agrformet.2006.08.009">https://doi.org/10.1016/j.agrformet.2006.08.009</a>, 2006. Betts, A. K., Köhler, M., and Zhang, Y.-C.: Comparison of river basin hydrometeorology in ERA-Interim and ERA-40 reanalyses with observations, J. Geophys. Res., 114, D02101, <a href="http://dx.doi.org/10.1029/2008JD010761">https://doi.org/10.1029/2008JD010761</a>, 2009. Boussetta, S., Balsamo, G., Beljaars, A., and Jarlan, J.: Impact of a satellite-derived Leaf Area Index monthly climatology in a global Numerical Weather Prediction model, Int. J. Remote Sens., 34, 3520–3542, 2013a. Boussetta, S., Balsamo, G., Beljaars, A., Agust\`i-Panareda, A., Calvet, J.-C., Jacobs, C., van den Hurk, B., Viterbo, P., Lafont, S., Dutra, E., Jarlan, L., Balzarolo, M., Papale, D., and van der Werf, G.: Natural land carbon exchanges in the ECMWF Integrated Forecasting system: Implementation and offline validation, J. Geophys. Res., 118, 1–24, 2013b. Brun, E., Vionnet, V., Boone, A., Decharme, B., Peings, Y., Valette, R., Karbou, F., and Morin, S.: Simulation of northern Eurasian local snow depth, mass and density using a detailed snowpack model and meteorological reanalyses, J. Hydrometeorol., 14, 203–219, 2013. Ceballos, A., Scipal, K., Wagner, W., and Martinez-Fernandez, J.: Validation of ERS scatterometer-derived soil moisture data in the central part of the Duero-Basin, Spain, Hydrol. Process., 19, 1549–1566, 2005. Cloke, H. L., Weisheimer, A., and Pappenberger, F.: Representing uncertainty in land surface hydrology: fully coupled simulations with the ECMWF land surface scheme, Proceeding of ECMWF, WMO/WGNE, WMO/THORPEX and WCRP Workshop on "Representing model uncertainty and error in numerical weather and climate prediction models", ECMWF, Reading, UK, June 2011. Cressman, G. P.: An operational objective analysis system, Mon. Weather Rev., 87, 367–374, 1959. Decker, M., Brunke, M. A., Wang, Z., Sakaguchi, K., Zeng, X., and Bosilovich, M. G.: Evaluation of the reanalysis products from GSFC, NCEP, and ECMWF Using Flux Tower Observations, J. Climate, 25, 1916–1944, <a href="http://dx.doi.org/10.1175/JCLI-D-11-00004.1">https://doi.org/10.1175/JCLI-D-11-00004.1</a>, 2012. Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P.. Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kallberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B. K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–597, <a href="http://dx.doi.org/10.1002/qj.828">https://doi.org/10.1002/qj.828</a>, 2011. Dee, D., Balmaseda, M., Balsamo, G., Engelen, R., Simmons, A., and Thépaut, J.-N.: Toward a consistent reanalysis of the climate system, B. Am. Meteorol. Soc., 95, 1235–1248, <a href="http://dx.doi.org/10.1175/BAMS-D-13-00043.1">https://doi.org/10.1175/BAMS-D-13-00043.1</a>, 2014. de Rosnay, P., Drusch, M., Vasiljevic, D., Balsamo, G., Albergel, C., and Isaksen, L.: A simplified Extended Kalman Filter for the global operational soil moisture analysis at ECMWF, Q. J. Roy. Meteorol. Soc., 139, 1199–1213, <a href="http://dx.doi.org/10.1002/qj.2023">https://doi.org/10.1002/qj.2023</a>, 2013. de Rosnay, P., Balsamo, G., Albergel, C., Muñoz-Sabater, J., and Isaksen, L.: Initialisation of land surface variables for Numerical Weather Prediction, Surv. Geophys., 35, 607–621, <a href="http://dx.doi.org/10.1007/s10712-012-9207-x">https://doi.org/10.1007/s10712-012-9207-x</a>, 2014. Dirmeyer, P. A.: A history and review of the Global Soil Wetness Project (GSWP), J. Hydrometeorol., 12, 729–749, <a href="http://dx.doi.org/10.1175/JHM-D-10-05010.1">https://doi.org/10.1175/JHM-D-10-05010.1</a>, 2011. Dirmeyer, P. A., Gao, X., and Oki, T.: The second Global Soil Wetness Project – Science and implementation plan, IGPO Int. GEWEX Project Office Publ. Series 37, Global Energy and Water Cycle Exp. (GEWEX) Proj. Off., Silver Spring, MD, 65 pp., 2002. Dirmeyer, P. A., Gao, X., Zhao, M., Guo, Z., Oki, T., and Hanasaki, N.: GSWP-2: Multimodel analysis and implications for our perception of the land surface, B. Am. Meteorol. Soc., 87, 1381–1397, 2006. Dorigo, W. A., Wagner, W., Hohensinn, R., Hahn, S., Paulik, C., Xaver, A., Gruber, A., Drusch, M., Mecklenburg, S., van Oevelen, P., Robock, A., and Jackson, T.: The International Soil Moisture Network: a data hosting facility for global in situ soil moisture measurements, Hydrol. Earth Syst. Sci., 15, 1675–1698, <a href="http://dx.doi.org/10.5194/hess-15-1675-2011">https://doi.org/10.5194/hess-15-1675-2011</a>, 2011. Dorigo, W. A., Xaver, A., Vreugdenhil, M., Gruber, A., Hegyiova\`i, A., Sanchis-Dufau, A. D., Wagner, W., and Drusch, M.: Global automated quality control of in-situ soil moisture data from the International Soil Moisture Network, Vadose Zone J., 12, <a href="http://dx.doi.org/10.2136/vzj2012.0097">https://doi.org/10.2136/vzj2012.0097</a>, 2013. Douville, H., Royer, J. F., and Mahfouf, J.-F.: A new snow parameterization for the Meteo-France climate model, 1: Validation in stand-alone experiments, Clim. Dynam., 12, 21–35, 1995. Drusch, M. and Viterbo, P.: Assimilation of screen-level variables in ECMWF's Integrated Forecast System: A study on the impact on the forecast quality and analyzed soil moisture, Mon. Weather Rev., 135, 300–314, 2007. Drusch, M., Vasiljevic, D., and Viterbo, P.: ECMWF's global snow analysis: assessment and revision based on satellite observations, J. Appl. Meteorol., 43, 1282–1294, 2004. Drusch, M., Scipal, K., de Rosnay, P., Balsamo, G., Andersson, E., Bougeault, P., and Viterbo, P.: Towards a Kalman Filter based soil moisture analysis system for the operational ECMWF Integrated Forecast System, Geophys. Res. Lett., 36, L10401, <a href="http://dx.doi.org/10.1029/2009GL037716">https://doi.org/10.1029/2009GL037716</a>, 2009. Dutra, E., Balsamo, G., Viterbo, P., Miranda, P., Beljaars, A., Schär, C., and Elder, K.: An improved snow scheme for the ECMWF land surface model: description and offline validation, J. Hydrometeorol., 11, 899–916, <a href="http://dx.doi.org/10.1175/JHM-D-11-072.1">https://doi.org/10.1175/JHM-D-11-072.1</a>, 2010. Dutra, E., Viterbo, P., Miranda, P. M. A., and Balsamo, G.: Complexity of snow schemes in a climate model and its impact on surface energy and hydrology, J. Hydrometeorol., 13, 521–538, <a href="http://dx.doi.org/10.1175/jhm-d-11-072">https://doi.org/10.1175/jhm-d-11-072</a>, 2012. Fowler, A. and van Leeuwen, P.: Measures of observation impact in non-Gaussian data assimilation, Tellus A, 64, 17192, <a href="http://dx.doi.org/10.3402/tellusa.v64i0.17192">https://doi.org/10.3402/tellusa.v64i0.17192</a>, 2012. Huffman, G. J., Adler, R. F., Bolvin, D. T., and Gu, G.: Improving the global precipitation record: GPCP Version 2.1, Geophys. Res. Lett., 36, L17808, <a href="http://dx.doi.org/10.1029/2009GL040000">https://doi.org/10.1029/2009GL040000</a>, 2009. Kållberg, P.: Forecast drift in ERA-Interim, ERA Report Series No. 10, ECMWF, Reading, UK, 9 pp., 2011. Koster, R. D., Guo, Z., Dirmeyer, P. A., Bonan, G., Chan, E., Cox, P., Davies, H., Gordon, C. T., Kanae, S., Kowalczyk, E., Lawrence, D., Liu, P., Lu, C. H., Malyshev, S., McAvaney, B., Mitchell, K., Mocko, D., Oki, T., Oleson, K. W., Pitman, A., Sud, Y. C., Taylor, C. M., Verseghy, D., Vasic, R., Xue, Y., and Yamada, T.: GLACE: The Global Land-Atmosphere Coupling Experiment, Part I: Overview, J. Hydrometeorol., 7, 590–610, 2006. Koster, R., Mahanama, S., Yamada, T., Balsamo, G., Boisserie, M., Dirmeyer, P., Doblas-Reyes, F., Gordon, T., Guo, Z., Jeong, J.-H., Lawrence, D., Li, Z., Luo, L., Malyshev, S., Merryfield, W., Seneviratne, S. I., Stanelle, T., van den Hurk, B., Vitart, F., and Wood, E. F.: The contribution of land surface initialization to sub-seasonal forecast skill: First results from the GLACE-2 Project, Geophys. Res. Lett., 37, L02402, <a href="http://dx.doi.org/10.1029/2009GL041677">https://doi.org/10.1029/2009GL041677</a>, 2009. Koster, R., Mahanama, S. P. P., Yamada, T. J., Balsamo, G., Berg, A. A., Boisserie, M., Dirmeyer, P. A., Doblas-Reyes, F. J., Drewitt, G., Gordon, C. T., Guo, Z., Jeong, J.-H., Lee, W.-S., Li, Z., Luo, L., Malyshev, S., Merryfield, W. J., Seneviratne, S. I., Stanelle, T., van den Hurk, B. J. J. M., Vitart, F., and Wood, E. F.: The second phase of the global land-atmosphere coupling experiment: soil moisture contributions to sub-seasonal forecast skill, J. Hydrometeorol., 12, 805–822, <a href="http://dx.doi.org/10.1175/2011JHM1365.1">https://doi.org/10.1175/2011JHM1365.1</a>, 2011. Mahfouf, J.-F. and Noilhan, J.: Comparative study of various formulations of evaporation from bare soil using in situ data, J. Appl. Meteorol., 30, 351–362, 1991. Mahfouf, J.-F., Bergaoui, K., Draper, C., Bouyseel, F., Taillefer, F., and Taseva, L.: A comparison of two off-line soil analysis schemes for assimilation of screen level observations, J. Geophys. Res., 114, D08105, <a href="http://dx.doi.org/10.1029/2008JD011077">https://doi.org/10.1029/2008JD011077</a>, 2008. Molteni, F., Stockdale, T., Balmaseda, M., Balsamo, G., Buizza, R., Ferranti, L., Magnusson, L., Mogensen, K., Palmer, T., and Vitart, F.: The new ECMWF seasonal forecast system (System 4), ECMWF Tech. Memo No. 656, ECMWF, Reading, UK, 2011. Oki, T. and Kanae, S.: Global hydrological cycles and world water resources, Science, 313, 1068–1072, <a href="http://dx.doi.org/10.1126/science.1128845">https://doi.org/10.1126/science.1128845</a>, 2006. Pappenberger, F., Cloke, H., Balsamo, G., Ngo-Duc, T., and Oki, T.: Global runoff routing with the hydrological component of the ECMWF NWP system, Int. J. Climatol., 30, 2155–2174, <a href="http://dx.doi.org/10.1002/joc.2028">https://doi.org/10.1002/joc.2028</a>, 2009. Pappenberger, F., Dutra, E., Wetterhall, F., and Cloke, H. L.: Deriving global flood hazard maps of fluvial floods through a physical model cascade, Hydrol. Earth Syst. Sci., 16, 4143–4156, <a href="http://dx.doi.org/10.5194/hess-16-4143-2012">https://doi.org/10.5194/hess-16-4143-2012</a>, 2012. Pellarin, T., Laurent, J. P., Cappelaere, B., Decharme, B., Descroix, L., and Ramier, D.: Hydrological modelling and associated microwave emission of a semi-arid region in south-western Niger, J. Hydrol., 375, 262–272, 2009. Polcher, J., McAvaney, B., Viterbo, P., Gaertner, M.-A., Hahamann, A., Mahfouf, J.-F., Noilhan, J., Phillips, T., Pitman, A., Schlosser, C., Schulz, J.-P., Timbal, B., Verseghy, D., and Xue, Y.: A proposal for a general interface between land surface schemes and general circulation models, Global Planet. Change, 19, 261–276, 1998. Reichle, R. H., Koster, R. D., De Lannoy, G. J. M., Forman, B. A., Liu, Q., Mahanama, S. P. P., and Toure, A.: Assessment and enhancement of MERRA land surface hydrology estimates, J. Climate, 24, 6322–6338, <a href="http://dx.doi.org/10.1175/JCLI-D-10-05033.1">https://doi.org/10.1175/JCLI-D-10-05033.1</a>, 2011. Reichle, R. H., De Lannoy, G. J. M., Forman, B. A., Draper, C. S., and Liu, Q.: Connecting satellite observations with water cycle variables through land data assimilation: Examples using the NASA GEOS-5 LDAS, Surv. Geophys., 35, 577–606, <a href="http://dx.doi.org/10.1007/s10712-013-9220-8">https://doi.org/10.1007/s10712-013-9220-8</a>, 2014. Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Julio, B., Liu, E., Bosilovich, M. G., Schubert, S. D., Takacs, L., Kim, G.-K., Bloom, S., Chen, J., Collins, D., Conaty, A., da Silva, A., Gu, W., Joiner, J., Koster, R. D., Lucchesi, R., Molod, A., Owens, T., Pawson, S., Pegion, P., Redder, C. R., Reichle, R., Robertson, F. R., Ruddick, A. G., Sienkiewicz, M., and Woollen, J.: MERRA – NASA's modern-era retrospective analysis for research and applications, J. Climate, 24, 3624–3648, <a href="http://dx.doi.org/10.1175/JCLI-D-11-00015.1">https://doi.org/10.1175/JCLI-D-11-00015.1</a>, 2011. Román, M. O., Schaaf, C. B., Woodcock, C. E., Strahler, A. H., Yang, X., Braswell, R. H., Curtis, P. S., Davis, K. J., Dragoni, D., Goulden, M. L., Gu, L., Hollinger, D. Y., Kolb, T. E., Meyers, T. P., Munger, J. W., Privette, J. L., Richardson, A. D., Wilson, T. B., and Wofsy, S. C.: The MODIS (Collection V005) BRDF/albedo product: Assessment of spatial representativeness over forested landscapes, Remote Sens. Environ., 113, 2476–2498, 2009. Salomon, J. G., Schaaf, C. B., Strahler, A. H., Gao, F., and Jin, Y. F.: Validation of the MODIS bidirectional reflectance distribution function and albedo retrievals using combined observations from the Aqua and Terra platforms, IEEE T. Geosci. Remote, 44, 1555–1565, 2006. Schaefer, G. L. and Paetzold, R. F.: SNOTEL (SNOwpack TELemetry) and SCAN (Soil Climate Analysis Network), in: Automated Weather Stations for Applications in Agriculture and Water Resources Management: Current Use and Future Perspectives, Hubbard, edited by: Kenneth G. and Sivakumar, M. V. K., Proceedings of an International Workshop, 6–10 March 2000, <a href="http://www.wamis.org/agm/pubs/agm3/WMO-TD1074.pdf">http://www.wamis.org/agm/pubs/agm3/WMO-TD1074.pdf</a>, USA High Plains Climate Center Lincoln, Nebraska, and World Meteorological Organization, Geneva, Switzerland, 248 pp., 2001. Simmons, A. J., Willett, K. M., Jones, P. D., Thorne, P. W., and Dee, D. P.: Low-frequency variations in surface atmospheric humidity, temperature and precipitation: Inferences from reanalyses and monthly gridded observational datasets, J. Geophys. Res., 115, 1–21, <a href="http://dx.doi.org/10.1029/2009JD012442">https://doi.org/10.1029/2009JD012442</a>, 2010. Smith, A. B., Walker, J. P., Western, A. W., Young, R. I., Ellett, K. M., Pipunic, R. C., Grayson, R. B., Siriwardena, L., Chiew, F. H. S., and Richter, H.: The Murrumbidgee soil moisture monitoring network data set, Water Resour. Res., 48, W07701, <a href="http://dx.doi.org/10.1029/2012WR011976">https://doi.org/10.1029/2012WR011976</a>, 2012. Szczypta, C., Calvet, J.-C., Albergel, C., Balsamo, G., Boussetta, S., Carrer, D., Lafont, S., and Meurey, C.: Verification of the new ECMWF ERA-Interim reanalysis over France, Hydrol. Earth Syst. Sci., 15, 647–666, <a href="http://dx.doi.org/10.5194/hess-15-647-2011">https://doi.org/10.5194/hess-15-647-2011</a>, 2011. van den Hurk, B. and Viterbo, O.: The Torne-Kalix PILPS 2(e) experiment as a test bed for modifications to the ECMWF land surface scheme, Global Planet. Change, 38, 165–173, 2003. van den Hurk, B., Viterbo, P., Beljaars, A., and Betts, A. K.: Offline validation of the ERA-40 surface scheme, ECMWF Tech. Memo. No. 295, ECMWF, Reading, UK, 2000. van den Hurk, B., Best, M., Dirmeyer, P., Pitman, A., Polcher, J., and Santanello, J.: Acceleration of Land Surface Model Development over a Decade of Glass, B. Am. Meteorol. Soc., 92, 1593–1600, <a href="http://dx.doi.org/10.1175/BAMS-D-11-00007.1">https://doi.org/10.1175/BAMS-D-11-00007.1</a>, 2011. Vitart, F., Buizza, R., Alonso Balmaseda, M., Balsamo, G., Bidlot, J.-R., Bonet, A., Fuentes, M., Hofstadler, A., Molteni, F., and Palmer, T.: The new VAREPS-monthly forecasting system: a first step towards seamless prediction, Q. J. Roy. Meteorol. Soc., 134, 1789-1799, 2008. Viterbo, P. and Betts, A. K.: Impact of the ECMWF reanalysis soil water on forecasts of the July 1993 Mississippi flood, J. Geophys. Res.-Atmos., 104, 19361–19366, 1999. Wang, Z. and Zeng, X. B.: Evaluation of snow albedo in land models for weather and climate studies, J Appl. Meteorol. Clim., 49, 363–380, <a href="http://dx.doi.org/10.1175/2009jamc2134.1">https://doi.org/10.1175/2009jamc2134.1</a>, 2010. Weedon, G. P., Gomes, S., Viterbo, P., Shuttleworth, W. J., Blyth, E., Österle, H., Adam, J. C., Bellouin, N., Boucher, O., and Best, M.: Creation of the WATCH Forcing Data and its use to assess global and regional reference crop evaporation over land during the twentieth century, J. Hydrometeorol., 12, 823–848, 2011. Weedon, G. P., Balsamo, G., Bellouin, N., Gomes, S., Best, M. J., and Vidale, P.-L.: The WFDEI meteorological forcing dataset: WATCH forcing data methodology applied to ERA-Interim reanalysis data, Water Resour. Res., 50, 7505–7514, <a href="http://dx.doi.org/10.1002/2014WR015638">https://doi.org/10.1002/2014WR015638</a>, 2014. Zhou, L., Dickinson, R. E., Tian, Y., Zeng, X., Dai, Y., Yang, Z.-L., Schaaf, C. B., Gao, F., Jin, Y., Strahler, A., Myneni, R. B., Yu, H., Wu, W., and Shaikh, M.: Comparison of seasonal and spatial variations of albedos from Moderate-Resolution Imaging Spectroradiometer (MODIS) and common land model, J. Geophys. Res., 108, 4488, <a href="http://dx.doi.org/10.1029/2002jd003326">https://doi.org/10.1029/2002jd003326</a>, 2003.