Skip to main content

A New Qualitative Rough-Set Approach to Modeling Belief Functions

  • Conference paper
  • First Online:
Rough Sets and Current Trends in Computing (RSCTC 1998)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1424))

Included in the following conference series:

Abstract

The paper presents a novel view of the Dempster—Shafer belief function as a measure of diversity in relational data bases. The Dempster rule of evidence combination corresponds to the join operator of the relational database theory. This rough-set based interpretation is qualitative in nature and can represent a number of belief function operators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. International Journal of Approximate Reasoning. Special issues on MTE, 1990:4 and 1992:6.

    Google Scholar 

  2. Kłopotek M.A., Wierzchoń S.T.: Basic Formal Properties of A Relational Model of The Mathematical Theory of Evidence. Submitted to the Journal Demonstratio Mathematica.

    Google Scholar 

  3. Shafer G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton, 1976

    MATH  Google Scholar 

  4. Shafer G.: Allocation of probability, Ann. Probab. 7(5) (1979), 827–839

    Article  MATH  MathSciNet  Google Scholar 

  5. Skowron A., Grzymała-Busse J.W.: From rough set theory to evidence theory. [in:] Yager R.R., Kasprzyk J. and Fedrizzi M., eds, Advances in the Dempster—Shafer Theory of Evidence. J. Wiley, New York (1994), 193–236.

    Google Scholar 

  6. Smets Ph.: Resolving misunderstandings about belief functions, International Journal of Approximate Reasoning 1992:6:321–344.

    Article  MATH  Google Scholar 

  7. Vang A.: SQL and Relational Databases. Microtrend Books, Slawson Communications Inc., 1991.

    Google Scholar 

  8. Yao Y.Y., Lingras P.J.: Interpretations of belief functions in the Theory of Rough Sets. Information Sciences 104(1998) 1–2, 81–106.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kłopotek, M.A., Wierzchoń, S.T. (1998). A New Qualitative Rough-Set Approach to Modeling Belief Functions. In: Polkowski, L., Skowron, A. (eds) Rough Sets and Current Trends in Computing. RSCTC 1998. Lecture Notes in Computer Science(), vol 1424. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-69115-4_47

Download citation

  • DOI: https://doi.org/10.1007/3-540-69115-4_47

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64655-6

  • Online ISBN: 978-3-540-69115-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics