Skip to main content

Abstract

As beginning students of mathematics, we learn successively about various kinds of numbers. First come the natural numbers:

N = {1, 2, 3, …}.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

') var buybox = document.querySelector("[data-id=id_"+ timestamp +"]").parentNode var buyingOptions = buybox.querySelectorAll(".buying-option") ;[].slice.call(buyingOptions).forEach(initCollapsibles) var buyboxMaxSingleColumnWidth = 480 function initCollapsibles(subscription, index) { var toggle = subscription.querySelector(".buying-option-price") subscription.classList.remove("expanded") var form = subscription.querySelector(".buying-option-form") var priceInfo = subscription.querySelector(".price-info") var buyingOption = toggle.parentElement if (toggle && form && priceInfo) { toggle.setAttribute("role", "button") toggle.setAttribute("tabindex", "0") toggle.addEventListener("click", function (event) { var expandedBuyingOptions = buybox.querySelectorAll(".buying-option.expanded") var buyboxWidth = buybox.offsetWidth ;[].slice.call(expandedBuyingOptions).forEach(function(option) { if (buyboxWidth buyboxMaxSingleColumnWidth) { toggle.click() } else { if (index === 0) { toggle.click() } else { toggle.setAttribute("aria-expanded", "false") form.hidden = "hidden" priceInfo.hidden = "hidden" } } }) } initialStateOpen() if (window.buyboxInitialised) return window.buyboxInitialised = true initKeyControls() })()

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Y. André: G-Functions and Geometry. Aspects of Mathematics 13. Vieweg, Braunschweig 1989

    Google Scholar 

  2. A. Beilinson: Higher regulators of modular curves. In: Applications of Algebraic K-theory to Algebraic Geometry and Number Theory, Contemp. Math. 55. Amer. Math. Soc., Providence 1986, pp. 1–34

    Book  Google Scholar 

  3. F. Beukers: A note on the irrationality of f (2) and f (3). Bull. London Math. Soc. 11 (1979), 268–272

    Article  MATH  MathSciNet  Google Scholar 

  4. F. Beukers: Algebraic values of G-functions. J. Reine Angew. Math. 434 (1993), 45–65

    MATH  MathSciNet  Google Scholar 

  5. F. Beukers, E. Calabi and J. Kolk: Sums of generalized harmonic series and volumes. Nieuw Arch. Wisk. 11 (1993), 217–224

    MATH  MathSciNet  Google Scholar 

  6. F. Beukers and G. Heckman: Monodromy for the hypergeometric function n F n-1. Inv. math. 95 (1989), 325–354

    Article  MATH  Google Scholar 

  7. F. Beukers and J. Wolfart: Algebraic values of hypergeometric functions. In: New Advances in Transcendence Theory (ed. A. Baker). Cambridge University Press (1988), 68–81

    Chapter  Google Scholar 

  8. S. Bloch: A note on height pairings, Tamagawa numbers, and the Birch and Swinnerton-Dyer conjecture. Inv. math. 58 (1980), 65–76

    Article  MATH  MathSciNet  Google Scholar 

  9. S. Bloch and H. Esnault: Gauss-Manin determinant connections and periods for irregular connections. Preprint, Essen 1999

    MATH  Google Scholar 

  10. A. Borel: Cohomologie de SL n et valeurs de fonctions zêta aux points entiers. Ann. Scuola Norm. Sup. Pisa 4 (1977), 613–636

    MATH  Google Scholar 

  11. D. W. Boyd: Mahler’s measure and special values of L-functions. Experiment. Math. 7 (1998), 37–82

    Article  MATH  MathSciNet  Google Scholar 

  12. P. Colmez: Périodes des variétés abéliennes à multiplication complexe. Ann. Math. 138 (1993), 625–683

    Article  MATH  MathSciNet  Google Scholar 

  13. P. Deligne: Valeurs de fonctions L et périodes d’intégrales. In: Automorphic forms, Representations, and L-functions, Proc. Symp. Pure Math. 33. Amer. Math. Soc., Providence 1979, pp. 313–346

    Chapter  Google Scholar 

  14. C. Deninger and A. Scholl: The Beilinson conjectures. In: L-functions and Arithmetic, London Math. Soc. Lecture Notes 153 (eds. J. Coates and M. J. Taylor). Cambridge University Press, Cambridge 1991, pp. 173–209

    Chapter  Google Scholar 

  15. B. Gross and D. Zagier: Heegner points and derivatives of L-series. Inv. Math. 85 (1986), 225–320

    Article  MATH  MathSciNet  Google Scholar 

  16. B. Gross, W. Kohnen and D. Zagier: Heegner points and derivatives of L-series. II. Math. Annalen 278 (1987), 497–562

    Article  MATH  MathSciNet  Google Scholar 

  17. W. Hulsbergen: Conjectures in Arithmetic Algebraic Geometry. Aspects of Mathematics 18. Vieweg, Braunschweig 1992

    MATH  Google Scholar 

  18. U. Jannsen, S. Kleiman, J.-P. Serre (eds.): Motives. Proc. Symp. Pure Math. 55. AMS, Providence 1994

    MATH  Google Scholar 

  19. J.-P. Jouanolou: Une suite exacte de Mayer-Vietoris en K-theorie algebrique. In: Algebraic K-theory. I, Lecture Notes in Math. 341. Springer, Berlin Heidelberg 1973, pp. 293–316

    MATH  Google Scholar 

  20. F. Rodriguez Villegas: Modular Mahler Measures I. In: Topics in Number Theory (University Park, PA, 1997), Math. Appl. 467. Kluwer, Dordrecht 1999, pp. 17–48

    Chapter  Google Scholar 

  21. A. Scholl: Remarks on special values of L-functions. In: L-functions and Arithmetic, London Math. Soc. Lecture Notes 153 (eds. J. Coates and M. J. Taylor). Cambridge University Press, Cambridge 1991, pp. 373–392

    Chapter  Google Scholar 

  22. D. Shanks: Incredible identities. Fibonacci Quart. 12 (1974), 271, 280

    MATH  MathSciNet  Google Scholar 

  23. D. Shanks: Dihedral quartic approximations and series for π. J. Numb. Th. 14 (1982), 397–423

    Article  MATH  MathSciNet  Google Scholar 

  24. H. Stark: Values of L-functions at S = 1, 1–IV. Adv. Math. 7(1971), 301–343; 17 (1975), 60–92; 22 (1976), 64–84; 35 (1980), 197–235

    Article  MATH  Google Scholar 

  25. J. Tate: Les conjectures de Stark sur les fonctions L d’Artin en s = 0. Prog, in Math. 47. Birkhäuser, Boston 1984

    Google Scholar 

  26. A. Weil: Elliptic functions acccording to Eisenstein and Kronecker. Ergebnisse der Math. 88. Springer, Berlin Heidelberg 1976

    Google Scholar 

  27. N. J. Wildberger: Real fish, real numbers, real jobs. The Mathematical Intelligencer 21 (1999), 4–7

    Article  Google Scholar 

  28. H. Yoshida: On absolute CM-periods. In: Automorphic Forms, Automorphic Representations and Arithmetic (Fort Worth, TX, 1996), Proc. Sympos. Pure Math. 66, Amer. Math. Soc., Providence 1999, pp. 221–278

    Google Scholar 

  29. H. Yoshida: On absolute CM-periods. II. Amer. J. Math. 120 (1998), 1199–1236

    Article  MATH  MathSciNet  Google Scholar 

  30. D. Zagier: Poly logarithms, Dedekind zeta functions and the algebraic K-theory of fields. In: Arithmetic Algebraic Geometry, Progr. Math. 89. Birkhäuser, Boston 1991, pp. 391–30

    Chapter  Google Scholar 

  31. D. Zagier: Some strange 3-adic identities (Solution to Problem 6625). Amer. Math. Monthly 99 (1992), 66–69

    Article  MathSciNet  Google Scholar 

  32. D. Zagier: Values of zeta functions and their applications. In: First European Congress of Mathematics, Volume II, Progress in Math. 120. Birkhäuser, Basel 1994, pp.497–512

    MATH  Google Scholar 

  33. D. Zagier and H. Gangl: Classical and elliptic polylogàrithms and special values of L-series. In: The Arithmetic and Geometry of Algebraic Cycles, Nato Science Series C 548. Kluwer, Dordrecht 2000, pp. 561–615

    Chapter  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kontsevich, M., Zagier, D. (2001). Periods. In: Engquist, B., Schmid, W. (eds) Mathematics Unlimited — 2001 and Beyond. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56478-9_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56478-9_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63114-6

  • Online ISBN: 978-3-642-56478-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics