Skip to main content

Climate Change, Mountain Permafrost Degradation and Geotechnical Hazard

  • Chapter
Global Change and Mountain Regions

Part of the book series: Advances in Global Change Research ((AGLO,volume 23))

  • 5633 Accesses

  • 31 Citations

Abstract

The IPA Circum-Polar Permafrost Map (Brown et al. 1997) shows discontinuous and sporadic permafrost in the mountains of Europe, including Scandinavia, the Alps, the Pyrenees, and further east in the Urals. In general, the lower altitudinal limit of mountain permafrost increases with decreasing latitude, from sea level in Svalbard, to around 1500 m in Southern Norway, to above 2500 m in the southern Swiss Alps. Many of these low-latitude mountain regions have permafrost temperatures that are only a few degrees below zero, so that a slight shift in energy flux at the ground surface is likely to cause a significant increase in the depth of summer thawing and, in consequence, widespread permafrost degradation. Where permafrost is ice-rich, degradation caused by global warming is likely to be associated with increased magnitude and frequency of mountain slope instability (Harris et al. 2001a). Traditional landslide hazard assessment approaches, based on forward projection of historical data on distribution and magnitude-frequency relationships (Varnes 1984), may therefore become increasingly inappropriate if climate change leads to a significant change in the thresholds of processes within the permafrost geomorphic system. In this paper, approaches to the assessment of geotechnical hazards associated with mountain permafrost in a warming climate are outlined in the context of recent European collaborative research. A critical first stage is the early detection of permafrost responses to climate change through integrated monitoring systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Anbalagan, R. (1992). Landslide and hazard evaluation and zonation mapping in mountainous terrain. Engineering Geology 32, 269–277.

    Article  Google Scholar 

  • Brown, R. J., Ferrians, O. J., Heginbottom, J. A., and Melnikov, E. S. (1997). Circum-arctic map of permafrost and ground ice conditions. International Permafrost Association, US Geological Survey.

    Google Scholar 

  • Burgess, M. M., Smith, S. L., Brown, J., Romanovsky, V., and Hinkel, K. (2000). Global Terrestrail Network for Permafrost (GTN-P): Permafrost monitoring contributing to global climate observations. Current Research 2000-E14, Geological Survey of Canada, 1–8.

    Book  Google Scholar 

  • Burn, C. R., and Smith, C. A. S. (1988). Observations of the ‘thermal offset’ in near-surface mean annual ground temperatures at several sites near Mayo, Yukon Territory Canada. Arctic 41, 99–104.

    Article  Google Scholar 

  • Davies, M. C. R. D., Hamza, O., and Harris, C. (2002). Physical modelling of the effect of climate change on rock slope stability. In “Physical modelling in geotechnics: ICPMG.” (R. Phillips, P. J. Guo, and R. Popescu, Eds.), pp. 303–308.

    Google Scholar 

  • Dramis, F., Govi, M., Guglielmin, M., and Mortara, G. (1995). Mountain permafrost and slope instability in the Italian Alps: The Val Pola landslide. Permafrost and Periglacial Processes 6, 73–82.

    Article  Google Scholar 

  • Etzelmüller, B., Ødegård, R. S., Berthling, I., and Sollid, J. L. (2001). Terrain parameters and remote sensing data in the analysis of permafrost distribution and periglacial processes: Principles and examples from southern Norway. Permafrost and Periglacial Processes 12, 79–92.

    Article  Google Scholar 

  • Haeberli, W. (1973). Die Basis Temperatur der winterlichen Schneedecke als möglicher Indikator für die Verbreitung von Permafrost. Zeitschrift für Gletscherkunde und Glazialgeologie 9, 221–227.

    Google Scholar 

  • Haeberli, W. (1992). Construction, environmental problems and natural hazards in periglacial mountain belts. Permafrost and Periglacial Processes 3, 111–124.

    Article  Google Scholar 

  • Haeberli, W., und Patzelt, G. (1982). Permafrostkartierung im Gebiet der Hochebenkar-Blockgletscher, Obergurgl, Ötztaler Alpen. Zeitschrift für Gletscherkunde und Glazialgeologie 18, 127–150.

    Google Scholar 

  • Harris, C., and Vonder Mühll, D. (2001). Permafrost and climate in Europe: Climate change, mountain permafrost degradation and geotechnical hazard. In “Global change and protected areas.” (G. Visconti, M. Beniston, E. D. Iannorelli, and D. Barba, Eds.), pp. 71–82. Kluwer, Dordrecht.

    Chapter  Google Scholar 

  • Harris, C., Haeberli, W., Vonder Mühll, D., and King, L. (2001a). Permafrost monitoring in the high mountains of Europe: The PACE Project in its global context. Permafrost and Periglacial Processes 12, 3–12.

    Article  Google Scholar 

  • Harris, C., Davies, M. C. R., and Etzelmüller, B. (2001b). The assessment of potential geotechnical hazards associated with mountain permafrost in a warming global climate. Permafrost and PeriglacialProcesses 12, 145–156.

    Google Scholar 

  • Harris, C., Davies, M. C. R., and Rea, B. (2002). Centrifuge modelling of slope processes in thawing ice-rich soil. In “Physical modelling in geotechnics: ICPMG.” (R. Phillips, P. J. Guo, and R. Popescu, Eds.), pp. 297–302.

    Google Scholar 

  • Hauk, C. (2001). “Geophysical methods for detecting permafrost in high mountains.” Versuchsanstalt für Wasserbau Hydrologie und Glaziologie der Eidenössischen Technischen Hochschule Zürich, 171.

    Google Scholar 

  • Hoek, E., and Bray, J. (1981). “Introduction to rock mechanics.” Wiley, New York.

    Google Scholar 

  • Hoelzle, M. (1996). Mapping and modelling of mountain permafrost distribution in the Alps. NorskGeografisk Tidsskrift 50, 11–16.

    Article  Google Scholar 

  • Hoelzle, M., and Haeberli, W. (1995). Simulating the effects of mean annual air temperature changes on permafrost distribution and glacier size. An example from the Upper Engadin, Swiss Alps. Annals ofGlaciology 21, 400–405.

    Google Scholar 

  • Hoelzle, M., Stocker-Mittaz, C., Etzelmüller, B., and Haeberli, W. (2001). Surface energy fluxes and distribution models relating to permafrost in European Mountain areas: An overview of current developments. Permafrost and Periglacial Processes 12, 53–68.

    Article  Google Scholar 

  • Ishikawa, M., and Hirakawa, K. (2000). Mountain permafrost distribution based on BTS measurements and DC resistivity soundings in the Daisetsu Mountains, Hokkaido, Japan. Permafrost and PeriglacialProcesses 11, 109–123.

    Google Scholar 

  • Ives, J. D., and Messerli, B. (1981). Mountain hazard mapping in Nepal — Introduction to an applied mountain research project. Mountain Research and Development 1, 223–230.

    Article  Google Scholar 

  • Ketcham, S. A., and Black, P. B. (1995). Initial results from small-scale frost heave experiments in a centrifuge. U.S. Cold Regions Research and Engineering Laboratory, Report 95–9.

    Google Scholar 

  • King, L., and Kalisch, A. (1998). Permafrost distribution and implications for construction in the Zermatt area, Swiss Alps. In “Seventh International Conference on Permafrost Proceedings.” (A. G. Lewkowicz, and M. Allard, Eds.), Collection Nordicana. Centre d’Etudes Nordiques, Universite Laval, Quebec, PQ, Canada, 569–574.

    Google Scholar 

  • Morgenstern, N. R., and Nixon, J. F. (1971). One-dimensional consolidation of thawing soils. CanadianGeotechnical Journal 8, 558–565.

    Article  Google Scholar 

  • Scholfield, A. N. (1980). Cambridge geotechnical centrifuge operations, 20th Rankine Lecture, Géotechnique 30, 227–269.

    Article  Google Scholar 

  • Stocker-Mittaz, C., Hoelzle, M., and Haeberli, W. (2002). Modelling Alpine permafrost distribution based on energy-balance data: A first step. Permafrost and Periglacial Processes 13, 271–282.

    Article  Google Scholar 

  • Varnes, D. J. (1984). “Landslide hazard zonation: A review of principles and practice.” UNESCO, Paris.

    Google Scholar 

  • Vonder Mühll, D., Hauck, C., Gubler, H, McDonald, R., and Russill, N. (2001). New geophysical methods of investigating the nature and distribution of mountain permafrost with special reference to radiometry techniques. Permafrost and Periglacial Processes 12, 27–38.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Harris, C. (2005). Climate Change, Mountain Permafrost Degradation and Geotechnical Hazard. In: Huber, U.M., Bugmann, H.K.M., Reasoner, M.A. (eds) Global Change and Mountain Regions. Advances in Global Change Research, vol 23. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3508-X_22

Download citation

Keywords

Publish with us

Policies and ethics