Abstract
Termites are a clade of eusocial wood-feeding roaches with > 3000 described species. Eusociality emerged ~ 150 million years ago in the ancestor of modern termites, which, since then, have acquired and sometimes lost a series of adaptive traits defining of their evolution. Termites primarily feed on wood, and digest cellulose in association with their obligatory nutritional mutualistic gut microbes. Recent advances in our understanding of termite phylogenetic relationships have served to provide a tentative timeline for the emergence of innovative traits and their consequences on the ecological success of termites. While all “lower” termites rely on cellulolytic protists to digest wood, “higher” termites (Termitidae), which comprise ~ 70% of termite species, do not rely on protists for digestion. The loss of protists in Termitidae was a critical evolutionary step that fostered the emergence of novel traits, resulting in a diversification of morphology, diets, and niches to an extent unattained by “lower” termites. However, the mechanisms that led to the initial loss of protists and the succession of events that took place in the termite gut remain speculative. In this review, we provide an overview of the key innovative traits acquired by termites during their evolution, which ultimately set the stage for the emergence of “higher” termites. We then discuss two hypotheses concerning the loss of protists in Termitidae, either through an externalization of the digestion or a dietary transition. Finally, we argue that many aspects of termite evolution remain speculative, as most termite biological diversity and evolutionary trajectories have yet to be explored.







Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Cleveland LR (1926) Symbiosis among animals with special reference to termites and their intestinal flagellates. Q Rev Biol 1(1):51–60. https://doi.org/10.1086/394236
Engel P, Moran NA (2013) The gut microbiota of insects—diversity in structure and function. FEMS Microbiol Rev 37(5):699–735. https://doi.org/10.1111/1574-6976.12025
Higashi M, Abe T (1997) Global diversification of termites driven by the evolution of symbiosis and sociality. In: Abe T, Levin SA, Higashi M (eds) Biodiversity: an ecological perspective. Springer, New York, pp 83–112. https://doi.org/10.1007/978-1-4612-1906-4_7
Aanen DK, Eggleton P (2017) Symbiogenesis: beyond the endosymbiosis theory? J Theor Biol 434:99–103. https://doi.org/10.1016/j.jtbi.2017.08.001
Bourguignon T, Lo N, Dietrich C, Šobotník J, Sidek S, Roisin Y, Brune A, Evans TA (2018) Rampant host switching shaped the termite gut microbiome. Curr Biol 28(4):649–654. https://doi.org/10.1016/j.cub.2018.01.035
Nalepa CA (2020) Origin of mutualism between termites and flagellated gut protists: transition from horizontal to vertical transmission. Front Ecol Evol 8:14. https://doi.org/10.3389/fevo.2020.00014
Nalepa CA (2010) Altricial development in wood-feeding cockroaches: the key antecedent of termite eusociality. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 69–95. https://doi.org/10.1007/978-90-481-3977-4_4
Nalepa CA (2015) Origin of termite eusociality: trophallaxis integrates the social, nutritional, and microbial environments. Ecol Entomol 40(4):323–335. https://doi.org/10.1111/een.12197
Howard KJ, Thorne BL (2010) Eusocial evolution in termites and Hymenoptera. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 97–132. https://doi.org/10.1007/978-90-481-3977-4_5
Lo N, Engel MS, Cameron S, Nalepa CA, Tokuda G, Grimaldi D, Kitade O, Krishna K, Klass K-D, Maekawa K, Miura T, Thompson GJ et al (2007) Save Isoptera: a comment on Inward et al. Biol Lett 3(5):562–563. https://doi.org/10.1098/rsbl.2007.0264
Krishna K, Grimaldi DA, Krishna V, Engel MS (2013) Treatise on the Isoptera of the world. Bull Am Mus Nat Hist 377:1–2704
Bignell DE (2000) Introduction to symbiosis. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 189–208. https://doi.org/10.1007/978-94-017-3223-9_9
Cragg SM, Beckham GT, Bruce NC, Bugg TDH, Distel DL, Dupree P, Etxabe AG, Goodell BS, Jellison J, McGeehan JE, McQueen-Mason SJ, Schnorr K, Walton PH, Watts JEM, Zimmer M (2015) Lignocellulose degradation mechanisms across the tree of life. Curr Opin Chem Biol 29:108–119. https://doi.org/10.1016/j.cbpa.2015.10.018
Bar-On YM, Phillips R, Milo R (2016) The biomass distribution on Earth. Proc Natl Acad Sci USA 115(25):6506–6511. https://doi.org/10.1073/pnas.1711842115
Eggleton P (2020) The state of the world’s insects. Annu Rev Environ Res. https://doi.org/10.1146/annurev-environ-012420-050035
Jouquet P, Bottinelli N, Shanbhag RR, Bourguignon T, Traoré S, Abbasi SA (2016) Termites: the neglected soil engineers of tropical soils. Soil Sci 181(3–4):157–165. https://doi.org/10.1097/SS.0000000000000119
Brugerolle G, Radek R (2006) Symbiotic protozoa of termites. In: König H, Varma A (eds) Intestinal microorganisms of termites and other invertebrates. Springer, Cham, pp 243–269. https://doi.org/10.1007/3-540-28185-1_10
Ohkuma M, Brune A (2010) Diversity, structure, and evolution of the termite gut microbial community. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 413–438. https://doi.org/10.1007/978-90-481-3977-4_15
Eggleton P (2006) The termite gut habitat: its evolution and co-evolution. In: König H, Varma A (eds) Intestinal microorganisms of termites and other invertebrates. Springer, Berlin, pp 373–404. https://doi.org/10.1007/3-540-28185-1_16
Lo N, Eggleton P (2010) Termite phylogenetics and co-cladogenesis with symbionts. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 27–50. https://doi.org/10.1007/978-90-481-3977-4_2
Tai V, James ER, Nalepa CA, Scheffrahn RH, Perlman SJ, Keeling PJ (2015) The role of host phylogeny varies in shaping microbial diversity in the hindguts of lower termites. Appl Environ Microbiol 81(3):1059–1070. https://doi.org/10.1128/AEM.02945-14
Taerum SJ, De Martini F, Liebig J, Gile GH (2018) Incomplete co-cladogenesis between Zootermopsis termites and their associated protists. Environ Entomol 47(1):184–195. https://doi.org/10.1093/ee/nvx193
Radek R, Meuser K, Strassert JFH, Arslana O, Teßmer A, Šobotník J, Sillam-Dussès D, Nink RA, Brune A (2018) Exclusive gut flagellates of Serritermitidae suggest a major transfaunation Eevent in lower termites: description of Heliconympha glossotermitis gen. nov. spec. nov. J Eucaryot Microbiol 65(1):77–92. https://doi.org/10.1111/jeu.12441
Mee ED, Gaylor MG, Jasso-Selles DE, Mizumoto N, Gile GH (2020) Molecular phylogenetic position of Hoplonympha natator (Trichonymphea, Parabasalia): horizontal symbiont transfer or differential loss? J Eukaryotic Microbiol 67(2):268–272. https://doi.org/10.1111/jeu.12765
Kitade O, Matsumoto T (1998) Characteristics of the symbiotic flagellate composition within the termite family Rhinotermitidae (Isoptera). Symbiosis 25:271–278
Bignell DE (2016) The role of symbionts in the evolution of termites and their rise to ecological dominance in the tropics. In: Hurst CJ (ed) The mechanistic benefits of microbial symbionts. Springer, Cham, pp 121–172. https://doi.org/10.1007/978-3-319-28068-4_6
Bourguignon T, Lo N, Šobotník J, Ho SYW, Iqbal N, Coissac E, Lee M, Jendryka M, Sillam-Dussès D, Křížková B, Roisin Y, Evans TA (2017) Mitochondrial phylogenomics resolves the global spread of higher termites, ecosystem engineers of the tropics. Mol Biol Evol 34(3):589–597. https://doi.org/10.1093/molbev/msw253
Buček A, Šobotník J, He S, Shi M, McMahon DP, Holmes EC, Roisin Y, Lo N, Bourguignon T (2019) Evolution of termite symbiosis informed by transcriptome-based phylogenies. Curr Biol 29(21):3728–3734. https://doi.org/10.1016/j.cub.2019.08.076
Brune A, Dietrich C (2015) The gut microbiota of termites: digesting the diversity in the light of ecology and evolution. Annu Rev Microbiol 69:145–166. https://doi.org/10.1146/annurev-micro-092412-155715
Emerson AE (1938) Termite nests—a study of the phylogeny of behavior. Ecol Monogr 8(2):247–284. https://doi.org/10.2307/1943251
Nalepa CA (2011) Body size and termite evolution. Evol Biol 38(3):243–257. https://doi.org/10.1007/s11692-011-9121-z
Lo N, Tokuda G, Watanabe H, Rose H, Slaytor M, Maekawa K, Bandi C, Noda H (2000) Evidence from multiple gene sequences indicates that termites evolved from wood-feeding cockroaches. Curr Biol 10(13):801–804. https://doi.org/10.1016/S0960-9822(00)00561-3
Inward D, Beccaloni G, Eggleton P (2007) Death of an order: a comprehensive molecular phylogenetic study confirms that termites are eusocial cockroaches. Biol lett 3(3):331–335. https://doi.org/10.1098/rsbl.2007.0102
Engel MS, Grimaldi DA, Krishna K (2009) Termites (Isoptera): their phylogeny, classification, and rise to ecological dominance. Am Mus Novitates 3650:1–27. https://doi.org/10.1206/651.1
Engel MS, Barden P, Riccio ML, Grimaldi DA (2016) Morphologically specialized termite castes and advanced sociality in the Early Cretaceous. Curr Biol 26(4):522–530. https://doi.org/10.1016/j.cub.2015.12.061
Bourguignon T, Lo N, Cameron SL, Šobotník J, Hayashi Y, Shigenobu S, Watanabe D, Roisin Y, Miura T, Evans TA (2015) The evolutionary history of termites as inferred from 66 mitochondrial genomes. Mol Biol Evol 32(2):406–421. https://doi.org/10.1093/molbev/msu308
Watson JAL, Sewell JJ (1985) Caste development in Mastotermes and Kalotermes: which is primitive? In: Watson JAL, Okot-Kotber BM, Noirot C (eds) Current themes in tropical science, caste differentiation in social insects, vol 3. Pergamon Press, Oxford, pp 27–40. https://doi.org/10.1016/B978-0-08-030783-1.50008-2
Scheffrahn RH, Bourguignon T, Akama PD, Sillam-Dussès D, Šobotník J (2018) Roisinitermes ebogoensis gen. & sp. n., an outstanding drywood termite with snapping soldiers from Cameroon (Isoptera, Kalotermitidae). ZooKeys 787:91–105. https://doi.org/10.3897/zookeys.787.28195
Roisin Y, Korb J (2010) Social organization and the status of workers in termites. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 133–164. https://doi.org/10.1007/978-90-481-3977-4_6
Noirot C, Pasteels JM (1987) Ontogenetic development and evolution of the worker caste in termites. Experientia 43(8):851–860. https://doi.org/10.1007/BF01951642
Noirot C, Pasteels JM (1988) The worker caste is polyphyletic in termites. Sociobiology 14(1):15–20
Roisin Y (1994) Intragroup conflicts and the evolution of sterile castes in termites. Am Nat 143(5):751–765. https://doi.org/10.1086/285631
Shellman-Reeve JS (1997) The spectrum of eusociality in termites. In: Choe JC, Crespi BJ (eds) The evolution of social behavior in insects and arachnids. Cambridge University Press, Cambridge, pp 52–93. https://doi.org/10.1017/CBO9780511721953.005
Thorne BL (1997) Evolution of eusociality in termites. Annu Rev Ecol Syst 28(1):27–54. https://doi.org/10.1146/annurev.ecolsys.28.1.27
Thorne BL, Traniello JFA (2003) Comparative social biology of basal taxa of ants and termites. Annu Rev Entomol 48(1):283–306. https://doi.org/10.1146/annurev.ento.48.091801.112611
Korb J (2008) The ecology of social evolution in termites. In: Korb J, Heinze J (eds) Ecology of social evolution. Springer, Berlin, pp 151–174
Legendre F, Whiting MF, Bordereau C, Cancello EM, Evans TA, Grandcolas P (2008) The phylogeny of termites (Dictyoptera: Isoptera) based on mitochondrial and nuclear markers: implications for the evolution of the worker and pseudergate castes, and foraging behaviors. Mol Phylogenet Evol 48(2):615–627. https://doi.org/10.1016/j.ympev.2008.04.017
Watson JAL, Sewell JJ (1981) The origin and evolution of caste systems in termites. Sociobiology 6(1):101–118
Thompson GJ, Kitade O, Lo N, Crozier RH (2000) Phylogenetic evidence for a single, ancestral origin of a ‘true’ worker caste in termites. J Evol Biol 13(6):869–881. https://doi.org/10.1046/j.1420-9101.2000.00237.x
Thompson GJ, Kitade O, Lo N, Crozier RH (2004) On the origin of termite workers: weighing up the phylogenetic evidence. J Evol Biol 17(1):217–220. https://doi.org/10.1046/j.1420-9101.2003.00645.x
Bourguignon T, Chisholm RA, Evans TA (2016) The termite worker phenotype evolved as a dispersal strategy for fertile wingless individuals before eusociality. Am Nat 187(3):372–387. https://doi.org/10.1086/684838
Korb J, Buschmann M, Schafberg S, Liebig J, Bagnères A-G (2012) Brood care and social evolution in termites. Proc R Soc B Lond 279(1738):2662–2671. https://doi.org/10.1098/rspb.2011.2639
Nalepa CA (2016) ‘Cost’ of proctodeal trophallaxis in extant termite individuals has no relevance in analysing the origins of eusociality. Ecol Entomol 41(1):27–30. https://doi.org/10.1111/een.12276
Roisin Y (2016) What makes the cost of brood care important for the evolution of termite sociality? Its insignificance. Ecol Entomol 41(1):31–33. https://doi.org/10.1111/een.12278
Bignell DE, Roisin Y, Lo N (2010) Biology of termites: a modern synthesis. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3977-4
Cleveland LR, Hall SK, Sanders EP, Collier J (1934) The wood-feeding roach Cryptocercus, its protozoa, and the symbiosis between protozoa and roach. Mem Am Acad Arts Sci 17(2):185–342
Nalepa CA (1991) Ancestral transfer of symbionts between cockroaches and termites: an unlikely scenario. Proc R Soc B Lond 246(1316):185–189. https://doi.org/10.1098/rspb.1991.0143
Dietrich C, Köhler T, Brune A (2014) The cockroach origin of the termite gut microbiota: patterns in bacterial community structure reflect major evolutionary events. App Environ Microbiol 80(7):2261–2269. https://doi.org/10.1128/AEM.04206-13
Klass K-D, Nalepa C, Lo N (2008) Wood-feeding cockroaches as models for termite evolution (Insecta: Dictyoptera): Cryptocercus vs Parasphaeria boleiriana. Mol Phylogenet Evol 46(3):809–817. https://doi.org/10.1016/j.ympev.2007.11.028
Ohkuma M, Noda S, Hongoh Y, Nalepa CA, Inoue T (2009) Inheritance and diversification of symbiotic trichonymphid flagellates from a common ancestor of termites and the cockroach Cryptocercus. Proc R Soc B Lond 276(1655):239–245. https://doi.org/10.1098/rspb.2008.1094
Nalepa CA, Bignell DE, Bandi C (2001) Detritivory, coprophagy, and the evolution of digestive mutualisms in Dictyoptera. Insect Soc 48(3):194–201. https://doi.org/10.1007/PL00001767
Warnecke F, Luginbühl P, Ivanova N, Ghassemian M, Richardson TH, Stege JT, Cayouette M, McHardy AC, Djordjevic G, Aboushadi N, Sorek R, Tringe SG, Podar M, Garcia Martin H, Kunin V, Dalevi D, Madejska J, Kirton E, Platt D, Szeto E, Salamov A, Barry K, Mikhailova N, Kyrpides NC, Matson EG, Ottesen EA, Zhang X, Hernández M, Murillo C, Acosta LG, Rigoutsos I, Tamayo G, Green BD, Chang C, Rubin EM, Mathur EJ, Robertson DE, Hugenholtz P, Leadbetter JR (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450(169):560–565. https://doi.org/10.1038/nature06269
Yamada A, Inoue T, Noda S, Hongoh Y, Ohkuma M (2007) Evolutionary trend of phylogenetic diversity of nitrogen fixation genes in the gut community of wood-feeding termites. Mol Ecol 16(18):3768–3777. https://doi.org/10.1111/j.1365-294X.2007.03326.x
Hongoh Y, Sharma VK, Prakash T, Noda S, Toh H, Taylor TD, Kudo T, Sakaki Y, Toyoda A, Hattori M, Ohkuma M (2008) Genome of an endosymbiont coupling N2 fixation to cellulolysis within protist cells in termite gut. Science 322(5904):1108–1109. https://doi.org/10.1126/science.1165578
Watanabe H, Tokuda G (2010) Cellulolytic systems in insects. Annu Rev Entomol 55:609–632. https://doi.org/10.1146/annurev-ento-112408-085319
Ohkuma M, Noda S, Hattori S, Iida T, Yuki M, Starns D, Inoue J-I, Darby AC, Hongoh Y (2015) Acetogenesis from H2 plus CO2 and nitrogen fixation by an endosymbiotic spirochete of a termite-gut cellulolytic protist. Proc Acad Natl Sci USA 112(33):10224–10230. https://doi.org/10.1073/pnas.1423979112
Nalepa CA (1984) Colony composition, protozoan transfer and some life history characteristics of the woodroach Cryptocercus punctulatus Scudder (Dictyoptera: Cryptocercidae). Behav Ecol Sociobiol 14:273–279. https://doi.org/10.1007/BF00299498
Nalepa CA (1994) Nourishment and the origin of termite eusociality. In: Hunt JH, Nalepa CA (eds) Nourishment and evolution in insect societies. Westview Press, Boulder, pp 57–104
Korb J, Thorne B (2017) Sociality in termites. In: Rubenstein D, Abbot P (eds) Comparative social evolution. Cambridge University Press, Cambridge, pp 124–153. https://doi.org/10.1017/9781107338319.006
Costa JT (2006) The other insect societies. Harvard University Press, Cambridge, p 767
Trumbo ST (2012) Patterns of parental care in invertebrates. In: Royle NJ, Smiseth PT, Kölliker M (eds) The evolution of parental care. Oxford University Press, Oxford, pp 81–100
Wong JWY, Meunier J, Kölliker M (2013) The evolution of parental care in insects: the roles of ecology, life history and the social environment. Ecol Entomol 38(2):123–137. https://doi.org/10.1111/een.12000
Nalepa CA, Maekawa K, Shimada K, Saito Y, Arellano C, Matsumoto T (2008) Altricial development in subsocial wood-feeding cockroaches. Zool Sci 25(12):1190–1198. https://doi.org/10.2108/zsj.25.1190
Chouvenc T, Su N-Y (2017) Irreversible transfer of brood care duties and insights into the burden of caregiving in incipient subterranean termite colonies. Ecol Entomol 42(6):777–784. https://doi.org/10.1111/een.12443
Barden P, Engel MS (2020) Fossil social insects. In: Starr CK (ed) Encyclopedia of social insects. Springer International, Cham, pp 1–21. https://doi.org/10.1007/978-3-319-90306-4
Zhao Z, Yin X, Shih C, Gao T, Ren D (2020) Termite colonies from mid-Cretaceous Myanmar demonstrate their early eusocial lifestyle in damp wood. Natl Sci Rev 7(2):381–390. https://doi.org/10.1093/nsr/nwz141
Barden P, Ware JL (2017) Relevant relicts: the impact of fossil distributions on biogeographic reconstruction in ants and dragonflies. Insect Syst Div 1(1):73–80. https://doi.org/10.1093/isd/ixx005
Nalepa CA, Lenz M (2000) The ootheca of Mastotermes darwiniensis Froggatt (Isoptera: Mastotermitidae): homology with cockroach oothecae. Proc R Soc B Lond 267(1454):1809–1813. https://doi.org/10.1098/rspb.2000.1214
Sacchi L, Nalepa CA, Lenz M, Bandi C, Corona S, Grigolo A, Bigliardi E (2000) Transovarial transmission of symbiotic bacteria in Mastotermes darwiniensis (Isoptera: Mastotermitidae): ultrastructural aspects and phylogenetic implications. Ann Entomol Soc Am 93(6):1308–1313. https://doi.org/10.1603/0013-8746(2000)093[1308:TTOSBI]2.0.CO;2
Watson JAL, Metcalf EC, Sewell JJ (1977) A re-examination of the development of castes in Mastotermes darwiniensis Froggatt (Isoptera). Aust J Zool 25(1):25–42. https://doi.org/10.1071/ZO9770025
Hill GF (1925) Notes on Mastotermes darwiniensis Froggatt (Isoptera). Proc R Soc Vic 37:119–124
Sillam-Dussès D, Sémon E, Lacey MJ, Robert A, Lenz M, Bordereau C (2007) Trail-following pheromones in basal termites, with special reference to Mastotermes darwiniensis. J Chem Ecol 33(10):1960–1977. https://doi.org/10.1007/s10886-007-9363-5
Roisin Y (2000) Diversity and evolution of caste patterns. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 95–119. https://doi.org/10.1007/978-94-017-3223-9_5
Imms AD (1919) On the structure and biology of Archotermopsis, together with descriptions of new species of intestinal Protozoa, and general observations on the Isoptera. Philos Trans R Soc Lond 209:75–180
Lepage M, Darlington JPEC (2000) Population dynamics of termites. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 333–361. https://doi.org/10.1007/978-94-017-3223-9_16
Castle GB (1934) The damp-wood termites of western United States, genus Zootermopsis (formerly Termopsis). In: Kofoid CA (ed) Termites and termite control, 2nd edn. University of California Press, Berkeley, pp 273–310
Morgan FD (1959) The ecology and external morphology of Stolotermes ruficeps Brauer (Isoptera: Hodotermitidae). Trans R Soc N Zeal 86:155–195
Nkunika POY (1990) Field composition and size of the populations of the primitive damp wood termite, Porotermes adamsoni (Isoptera: Termopsidae) in South Australia. Sociobiology 16:251–258
Bordereau C, Pasteels JM (2010) Pheromones and chemical ecology of dispersal and foraging in termites. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 279–320. https://doi.org/10.1007/978-90-481-3977-4_11
Myles TG (1986) Reproductive soldiers in the Termopsidae (Isoptera). Pan-Pac Entomol 62(4):293–299
Thorne BL, Breisch NL, Muscedere ML (2003) Evolution of eusociality and the soldier caste in termites: influence of intraspecific competition and accelerated inheritance. Proc Acad Natl Sci USA 100(22):12808–12813. https://doi.org/10.1073/pnas.2133530100
Watson JAL (1973) The worker caste of the hodotermitid harvester termites. Insect Soc 20(1):1–20. https://doi.org/10.1007/BF02223558
Inward DJG, Vogler AP, Eggleton P (2007) A comprehensive phylogenetic analysis of termites (Isoptera) illuminates key aspects of their evolutionary biology. Mol Phylogenet Evol 44(3):953–967. https://doi.org/10.1016/j.ympev.2007.05.014
Engel MS, Grimaldi DA, Krishna K (2007) Primitive termites from the Early Cretaceous of Asia (Isoptera). Stuttgarter Beiträge zur Naturkunde, Serie B, Geologie und Paläontologie 371:1–32
Scheffrahn RH (2019) Expanded new world distributions of genera in the termite family Kalotermitidae. Sociobiology 66(1):136–153. https://doi.org/10.13102/sociobiology.v66i1.3492
Scheffrahn RH, Křeček J, Ripa R, Luppichini P (2009) Endemic origin and vast anthropogeneic dispersal of the West Indian drywood termite. Biol Invas 11(4):787–799. https://doi.org/10.1007/s10530-008-9293-3
Engel MS, Kaulfuss U (2017) Diverse, primitive termites (Isoptera: Kalotermitidae, incertae sedis) from the early Miocene of New Zealand. Aust Entomol 56(1):94–103. https://doi.org/10.1111/aen.12216
Roisin Y, Dejean A, Corbora B, Orivel J, Samaniego M, Leponce M (2006) Vertical stratification of the termite assemblage in a neotropical rainforest. Oecologia 149(2):301–311. https://doi.org/10.1007/s00442-006-0449-5
Korb J (2007) Workers of a drywood termite do not work. Front Zool 4:7. https://doi.org/10.1186/1742-9994-4-7
Nutting WL (1966) Colonizing flights and associated activities of termites. I. The desert damp-wood termite Paraneotermes simplicicornis (Kalotermitidae). Psyche 73(2):131–149. https://doi.org/10.1155/1966/59080
Mizumoto N, Bourguignon T (2020) Modern termites inherited the potential of collective construction from their common ancestor. Ecol Evol 10:6775–6784. https://doi.org/10.1002/ece3.6381
Mizumoto N, Bardunias PM, Pratt SC (2020) Complex relationship between tunneling patterns and individual behaviors in termites. Am Nat 196(5):555–565
Thompson GJ, Miller LR, Lenz M, Crozier RH (2000) Phylogenetic analysis and trait evolution in Australian lineages of drywood termites (Isoptera, Kalotermitidae). Mol Phylogenet Evol 17(3):419–429. https://doi.org/10.1006/mpev.2000.0852
Noirot C (1969) Glands and secretions. In: Krishna K, Weesner FM (eds) Biology of termites, vol 1. Academic Press, New York, pp 89–123. https://doi.org/10.1016/B978-0-12-395529-6.50008-8
Prestwich GD (1984) Defense mechanisms of termites. Annu Rev Entomol 29(1):201–232. https://doi.org/10.1146/annurev.en.29.010184.001221
Šobotník J, Weyda F, Hanus R, Kyjaková P, Doubský J (2004) Ultrastructure of the frontal gland in Prorhinotermes simplex (Isoptera: Rhinotermitidae) and quantity of the defensive substance. Euro J Entomol 101(1):153–163. https://doi.org/10.14411/eje.2004.020
Šobotník J, Jirošová A, Hanus R (2010) Chemical warfare in termites. J Insect Physiol 56(9):1012–1021. https://doi.org/10.1016/j.jinsphys.2010.02.012
Šobotník J, Sillam-Dussès D, Weyda F, Dejean A, Roisin Y, Hanus R, Bourguignon T (2010) The frontal gland in workers of Neotropical soldierless termites. Naturwissenschaften 97(5):95–503. https://doi.org/10.1007/s00114-010-0664-0
Piskorski R, Hanus R, Kalinová B, Valterová I, Křeček J, Bourguignon T, Roisin Y, Šobotník J (2009) Temporal and geographic variations in the morphology and chemical composition of the frontal gland in imagoes of Prorhinotermes species (Isoptera: Rhinotermitidae). Biol J Linnean Soc 98(2):384–392. https://doi.org/10.1111/j.1095-8312.2009.01286.x
Kutalová K, Hanus R, Bourguignon T, Roisin Y, Šobotník J (2013) Armed reproductives: evolution of the frontal gland in imagoes of Termitidae. Arthrop Struct Develop 42(4):339–348. https://doi.org/10.1016/j.asd.2013.04.001
Deligne J, Quennedey A, Blum MS (1981) The enemies and defense mechanisms of termites. In: Hermann HR (ed) Social insects, vol 2. Academic Press, New York, pp 1–76. https://doi.org/10.1016/B978-0-12-342202-6.50008-3
Quennedey A (1984) Morphology and ultrastructure of termite defense glands. In: Hermann HR (ed) Defensive mechanisms in social insects. Praeger, New York, pp 151–200
Šobotník J, Bourguignon T, Hanus R, Weyda F, Roisin Y (2010) Structure and function of defensive glands in soldiers of Glossotermes oculatus (Isoptera: Serritermitidae). Biol J Linnean Soc 99(4):839–848. https://doi.org/10.1111/j.1095-8312.2010.01392.x
Šobotník J, Hanus R, Kalinová B, Piskorski R, Cvačka J, Bourguignon T, Roisin Y (2008) E, E)-α-farnesene, the alarm pheromone of Prorhinotermes canalifrons (Isoptera: Rhinotermitidae. J Chem Ecol 34(4):478–486. https://doi.org/10.1007/s10886-008-9450-2
Waller DA, La Fage JP (1987) Unpalatability as a defense of Coptotermes formosanus Shiraki soldiers against ant predation. J Appl Entomol 103(15):148–153. https://doi.org/10.1111/j.1439-0418.1987.tb00973.x
Haverty MI (1977) The proportion of soldiers in termite colonies: a list and a bibliography (Isoptera). Sociobiology 2(3):199–216
Labandeira CC, Johnson KR, Wilf P (2002) Impact of the terminal Cretaceous event on plant-insect associations. Proc Natl Acad Sci USA 99(4):2061–2066. https://doi.org/10.1073/pnas.042492999
Barden P (2017) Fossil ants (Hymenoptera: Formicidae): ancient diversity and the rise of modern lineages. Myrmecol News 14:1–30. https://doi.org/10.25849/myrmecol.news_024:001
Tuma J, Eggleton P, Fayle TM (2020) Ant-termite interactions: an important but under-explored ecological linkage. Biol Rev 95(3):555–572. https://doi.org/10.1111/brv.12577
Krishna K, Grimaldi DA (2003) The first Cretaceous Rhinotermitidae (Isoptera): a new species, genus, and subfamily in Burmese amber. Am Mus Novitates 3390:1–10. https://doi.org/10.1206/0003-0082(2003)390%3c0001:TFCRIA%3e2.0.CO;2
Wu L-W, Bourguignon T, Šobotník J, Wen P, Liang W-R, Li H-F (2018) Phylogenetic position of the enigmatic termite family Stylotermitidae. Invertebr Syst 32(5):1111–1117. https://doi.org/10.1071/IS17093
Tsai P-H, Ping C-K, Li G-X (1978) Four new species of the genus Stylotermes Holmgren, K. et N. (Isoptera: Rhinotermitidae, Stylotermitinae) from Kwangsi. Acta Entomol Sinica 21:429–436
Roisin Y (1988) Morphology, development and evolutionary significance of the working stages in the caste system of Prorhinotermes (Insecta, Isoptera). Zoomorphol 107(6):339–347. https://doi.org/10.1007/BF00312217
Parmentier D, Roisin Y (2003) Caste morphology and development in Termitogeton nr. planus (Insecta, Isoptera, Rhinotermitidae). J Morphol 255(1):69–79. https://doi.org/10.1002/jmor.10047
Bourguignon T, Šobotník J, Hanus R, Roisin Y (2009) Developmental pathways of Glossotermes oculatus (Isoptera, Serritermitidae): at the cross-roads of worker caste evolution in termites. Evol Dev 11(6):659–668. https://doi.org/10.1111/j.1525-142X.2009.00373.x
Bourguignon T, Šobotník J, Sillam-Dussès D, Jiroš P, Hanus R, Roisin Y, Miura T (2012) Developmental pathways of Psammotermes hybostoma (Isoptera: Rhinotermitidae): old pseudergates make up a new sterile caste. PLoS ONE 7:e44527. https://doi.org/10.1371/journal.pone.0044527
Barbosa JRC, Constantino R (2017) Polymorphism in the neotropical termite Serritermes serrifer. Entomol Exp Appl 163(1):43–50. https://doi.org/10.1111/eea.12532
Rupf T, Roisin Y (2008) Coming out of the woods: do termites need a specialized worker caste to search for new food sources? Naturwissenschaften 95(9):811–819. https://doi.org/10.1007/s00114-008-0387-7
Su N-Y, Scheffrahn RH (1988) Foraging population and territory of the Formosan subterranean termite (Isoptera: Rhinotermitidae) in an urban environment. Sociobiology 14(2):353–359
Abe T (1987) Evolution of life types in termites. In: Kawano S, Connell JH, Hidaka T (eds) Evolution and coadaptation in biotic communities. University of Tokyo Press, Tokyo, pp 125–148
Li H-F, Su N-Y (2008) Sand displacement during tunnel excavation by the Formosan subterranean termite (Isoptera: Rhinotermitidae). Ann Entomol Soc Am 101(2):456–462. https://doi.org/10.1603/0013-8746(2008)101[456:SDDTEB]2.0.CO;2
Bardunias P, Su N-Y (2009) Opposing headings of excavating and depositing termites facilitate branch formation in the Formosan subterranean termite. Anim Behav 78(3):755–759. https://doi.org/10.1016/j.anbehav.2009.06.024
Rust MK, Su N-Y (2012) Managing social insects of urban importance. Annu Rev Entomol 57:355–375. https://doi.org/10.1146/annurev-ento-120710-100634
Evans TA, Forschler BT, Grace JK (2013) Biology of invasive termites: a worldwide review. Annu Rev Entomol 58:455–474. https://doi.org/10.1146/annurev-ento-120811-153554
Bourguignon T, Lo N, Šobotník J, Sillam-Dussès D, Roisin Y, Evans TA (2016) Oceanic dispersal, vicariance, and human introduction shaped the modern distribution of the termites Reticulitermes, Heterotermes and Coptotermes. Proc R Soc B Lond 283(1827):1827–1835. https://doi.org/10.1098/rspb.2016.0179
Chouvenc T, Li H-F, Austin J, Bordereau C, Bourguignon T, Cameron S, Cancello E, Constantino R, Costa-Leonardo A-M, Eggleton P, Evans T, Forschler B, Grace JK, Husseneder C, Křeček J, Lee C-Y, Lee T, Lo N, Messenger M, Mullins A, Robert A, Roisin Y, Scheffrahn RH, Sillam-Dussès D, Šobotník J, Szalanski A, Takematsu Y, Vargo EL, Yamada A, Yoshimura T, Su N-Y (2016) Revisiting Coptotermes (Isoptera: Rhinotermitidae): a global taxonomic roadmap for species validity and distribution of the economically important subterranean termite genus. Syst Entomol 41(2):299–306. https://doi.org/10.1111/syen.12157
Oberst S, Lai JCS, Evans TA (2016) Termites utilise clay to build structural supports and so increase foraging resources. Scie Rep 6(1):20990. https://doi.org/10.1038/srep20990
Wood TG (1988) Termites and the soil environment. Biol Fertile Soils 6(3):228–236. https://doi.org/10.1007/BF00260819
Chouvenc T, Efstathion CA, Elliott ML, Su N-Y (2013) Extended disease resistance emerging from the faecal nest of a subterranean termite. Proc R Soc B Lond 280(1770):20131885. https://doi.org/10.1098/rspb.2013.1885
Mullins A, Su N-Y (2018) Parental nitrogen transfer and apparent absence of N2 fixation during colony foundation in Coptotermes formosanus Shiraki. Insects 9(2):37. https://doi.org/10.3390/insects9020037
Chouvenc T, Elliott ML, Šobotník J, Efstathion CA, Su N-Y (2018) The termite fecal nest: a framework for the opportunistic acquisition of beneficial soil Streptomyces (Actinomycetales: Streptomycetaceae). Environ Entomol 47(6):1431–1439. https://doi.org/10.1093/ee/nvy152
Arango RA, Carlson CM, Currie CR, McDonald BR, Book AJ, Green F III, Lebow NK, Raffa KF (2016) Antimicrobial activity of actinobacteria isolated from the guts of subterranean termites. Environ Entomol 45(6):1415–1423. https://doi.org/10.1093/ee/nvw126
Legendre F, Condamine FL (2018) When Darwin’s special difficulty promotes diversification in insects. Syst Biol 67(5):873–887. https://doi.org/10.1093/sysbio/syy014
Noirot C (1995) The gut of termites (Isoptera). Comparative anatomy, systematics, phylogeny. I. Lower termites. Ann Soc Entomol France 31(3):197–226
Noirot C (2001) The gut of termites (Isoptera). Comparative anatomy, systematics, phylogeny. II. Higher termites (Termitidae). Ann Soc Entomol France 37(4):431–471
Scholtz OI, MacLeod N, Eggleton P (2008) Termite soldier defence strategies: a reassessment of Prestwich’s classification and an examination of the evolution of defence morphology using extended eigenshape analyses of head morphology. Zool J Linn Soc Lond 153(4):631–650. https://doi.org/10.1111/j.1096-3642.2008.00396.x
Kuan K-C, Chiu C-I, Shih M-C, Chi K-J, Li H-F (2020) Termite’s twisted mandible presents fast, powerful, and precise strikes. Sci Rep 10(9462):1–12. https://doi.org/10.1038/s41598-020-66294-1
Bourguignon T, Šobotník J, Dahlsjö C, Roisin Y (2016) The soldierless Apicotermitinae: insights into a poorly known and ecologically dominant tropical taxon. Insect Soc 63(1):39–50. https://doi.org/10.1007/s00040-015-0446-y
Bignell DE (2006) Termites as soil engineers and soil processors. In: König H, Varma A (eds) Intestinal microorganisms of termites and other invertebrates. Springer, Cham, pp 183–220. https://doi.org/10.1007/3-540-28185-1_8
Bourguignon T, Šobotník J, Lepoint G, Martin J-M, Hardy OJ, Dejean A, Roisin Y (2011) Feeding ecology and phylogenetic structure of a complex neotropical termite assemblage, revealed by nitrogen stable isotope ratios. Ecol Entomol 36(2):261–269. https://doi.org/10.1111/j.1365-2311.2011.01265.x
Mikaelyan A, Dietrich C, Köhler T, Poulsen M, Sillam-Dussès D, Brune A (2015) Diet is the primary determinant of bacterial community structure in the guts of higher termites. Mol Ecol 24(20):5284–5285. https://doi.org/10.1111/mec.13376
Donovan SE, Eggleton P, Bignell DE (2001) Gut content analysis and a new feeding group classification of termites. Ecol Entomol 26(4):356–366. https://doi.org/10.1046/j.1365-2311.2001.00342.x
Tokuda G, Watanabe H (2007) Hidden cellulases in termites: revision of an old hypothesis. Biol Lett 3(3):336–339. https://doi.org/10.1098/rsbl.2007.0073
Chiu C-I (2020) Termite fungal cultivation as a ruminant-like digestive system? In: Proceedings of the 13th conference of the Pacific Rim termite research group, 12 Feb 2020
Garnier-Sillam E, Toutain F, Villemin G, Renoux J (1989) Études préliminaires des meules originales du termite xylophage Sphaerotermes sphaerothorax (Sjöstedt). Insect Soc 36:293–312. https://doi.org/10.1007/BF02224882
Rouland-Lefèvre C, Bignell DE (2001) Cultivation of symbiotic fungi by termites of the subfamily Macrotermitinae. In: Seckbach J (ed) Symbiosis, mechanisms and model systems. Springer, Cham, pp 731–756. https://doi.org/10.1007/0-306-48173-1_46
Hyodo F, Tayasu I, Inoue T, Azuma J-I, Kudo T (2003) Differential role of symbiotic fungi in lignin degradation and food provision for fungus-growing termites (Macrotermitinae: Isoptera). Funct Ecol 17(2):186–193. https://doi.org/10.1046/j.1365-2435.2003.00718.x
Mossebo DC, Essouman EPF, Machouart MC, Gueidan C (2017) Phylogenetic relationships, taxonomic revision and new taxa of Termitomyces (Lyophyllaceae, Basidiomycota) inferred from combined nLSU- and mtSSU-rDNA sequences. Phytotaxa 321(1):71–102. https://doi.org/10.11646/phytotaxa.321.1.3
Grassé P-P (1984) Termitologia. Anatomie–physiologie–biologie–systématique des termites, fondation des societes, construction, vol 2. Masson, Paris
Rouland-Lefèvre C (2000) Symbiosis with fungi. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 289–306. https://doi.org/10.1007/978-94-017-3223-9_14
Chiu C-I, Ou J-H, Chen C-Y, Li H-F (2019) Fungal nutrition allocation enhances mutualism with fungus-growing termite. Fungal Ecol 41:92–100. https://doi.org/10.1016/j.funeco.2019.04.001
Aanen DK, Boomsma JJ (2005) Evolutionary dynamics of the mutualistic symbiosis between fungus-growing termites and Termitomyces fungi. In: Vega FE, Blackwell M (eds) Insect-fungal associations: ecology and evolution. Oxford University Press, Oxford, pp 191–210
Nobre T, Koné NA, Konaté S, Linsenmair KE, Aanen DK (2011) Dating the fungus-growing termites’ mutualism shows a mixture between ancient codiversification and recent symbiont dispersal across divergent hosts. Mol Ecol 20(12):2619–2627. https://doi.org/10.1111/j.1365-294X.2011.05090.x
Roberts EM, Todd CN, Aanen DK, Nobre T, Hilbert-Wolf HL, O’Connor PM, Tapanila L, Mtelela C, Stevens NJ (2016) Oligocene termite nests with in situ fungus gardens from the Rukwa Rift basin, Tanzania, support a Paleogene African origin for insect agriculture. PLoS ONE 11(6):e0156847. https://doi.org/10.1371/journal.pone.0156847
Ivany LC, Patterson WP, Lohmann KC (2000) Cooler winters as a possible cause of mass extinctions at the Eocene/Oligocene boundary. Nature 407(6806):887–890. https://doi.org/10.1038/35038044
Mueller UG, Schultz TR, Currie CR, Adams RMM, Malloch D (2001) The origin of the attine ant-fungus mutualism. Q Rev Biol 76(2):169–197. https://doi.org/10.1086/393867
Aanen DK, Eggleton P, Rouland-Lefèvre C, Guldberg-Frøslev T, Rosendahl S, Boomsma JJ (2002) The evolution of fungus-growing termites and their mutualistic fungal symbionts. Proc Natl Acad Sci USA 99(23):14887–14892. https://doi.org/10.1073/pnas.222313099
Mueller UG, Gerardo NM, Aanen DK, Six DL, Schultz TR (2005) The evolution of agriculture in insects. Annu Rev Ecol Evol Syst 36:563–595. https://doi.org/10.1146/annurev.ecolsys.36.102003.152626
Korb J, Aanen DK (2003) The evolution of uniparental transmission of fungal symbionts in fungus-growing termites (Macrotermitinae). Behav Ecol Sociobiol 53(2):65–71. https://doi.org/10.1007/s00265-002-0559-y
Aanen DK (2006) As you reap, so shall you sow: coupling of harvesting and inoculating stabilizes the mutualism between termites and fungi. Biol Lett 2(2):209–212. https://doi.org/10.1098/rsbl.2005.0424
Nobre T, Aanen DK (2012) Fungiculture or termite husbandry? The ruminant hypothesis. Insects 3(1):307–323. https://doi.org/10.3390/insects3010307
Poulsen M (2015) Towards an integrated understanding of the consequences of fungus domestication on the fungus-growing termite gut microbiota. Environ Microbiol 17(8):2562–2572. https://doi.org/10.1111/1462-2920.12765
Nobre T, Fernandes C, Boomsma JJ, Korb J, Aanen DK (2011) Farming termites determine the genetic population structure of Termitomyces fungal symbionts. Mol Ecol 20(9):2023–2033. https://doi.org/10.1111/j.1365-294X.2011.05064.x
da Costa RR, Vreeburg SME, Shik JZ, Aanen DK, Poulsen M (2019) Can interaction specificity in the fungus-farming termite symbiosis be explained by nutritional requirements of the fungal crop? Fungal Ecol 38:54–61. https://doi.org/10.1016/j.funeco.2018.08.009
van de Peppel LJJ, Aanen DK (2020) High diversity and low host-specificity of Termitomyces symbionts cultivated by Microtermes spp. indicate frequent symbiont exchange. Fungal Ecol 45:100917. https://doi.org/10.1016/j.funeco.2020.100917
Aanen DK, Ros VID, de Fine Licht HH, Mitchell J, de Beer ZW, Slippers B, Rouland-LeFèvre C, Boomsma JJ (2007) Patterns of interaction specificity of fungus-growing termites and Termitomyces symbionts in South Africa. BMC Evol Biol 7(115):1–11. https://doi.org/10.1186/1471-2148-7-115
Nobre T, Eggleton P, Aanen DK (2010) Vertical transmission as the key to the colonization of Madagascar by fungus-growing termites? Proc R Soc B Lond 277(1680):359–365
Aanen DK, de Fine Licht HH, Debets AJM, Kerstes NAG, Hoekstra RF, Boomsma JJ (2009) High symbiont relatedness stabilizes mutualistic cooperation in fungus-growing termites. Science 326(5956):1103–1106. https://doi.org/10.1126/science.1173462
Mueller UG, Gerardo N (2002) Fungus farming insects: multiple origins and diverse evolutionary histories. Proc Natl Acad Sci USA 99(24):15247–15249. https://doi.org/10.1073/pnas.242594799
Sands WA (1969) The association of termites and fungi. In: Krishna K, Weesner FM (eds) Biology of termites, vol 1. Academic Press, New York, pp 495–524. https://doi.org/10.1016/B978-0-12-395529-6.50020-9
Wood TG, Thomas RJ (1989) The mutualistic association between Macrotermitinae and Termitomyces. In: Wilding N, Collins NM, Hammond PM, Webber JF (eds) Insect-fungus interactions: 14th symposium of the Royal Entomological Society of London in collaboration with the British Mycological Socety. Academic Press, New York, pp 69–92
Darlington JPEC (1994) Nutrition and evolution in fungus-growing termites. In: Hunt JH, Nalepa CA (eds) Nourishment and evolution in insect societies. Westview Press, Boulder, pp 105–130
Brauman A, Bignell DE, Tayasu I (2000) Soil-feeding termites: biology, microbial associations and digestive mechanisms. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 233–259. https://doi.org/10.1007/978-94-017-3223-9_11
Eggleton P (1999) Termite species description rates and the state of termite taxonomy. Insect Soc 46(1):1–5. https://doi.org/10.1007/s000400050105
Davies RG, Eggleton P, Jones DT, Gathorne-Hardy FJ, Hernández LM (2003) Evolution of termite functional diversity: analysis and synthesis of local ecological and regional influences on local species richness. J Biogeogr 30(6):847–877. https://doi.org/10.1046/j.1365-2699.2003.00883.x
Ackerman IL, Constantino R, Gauch HG, Lehmann J, Riha SJ, Fernandes ECM (2009) Termite (Insecta: Isoptera) species composition in a primary rain forest and agroforests in Central Amazonia. Biotropica 41(2):226–233. https://doi.org/10.1111/j.1744-7429.2008.00479.x
Dahlsjö CAL, Parr CL, Malhi Y, Rahman H, Meir P, Jones DT, Eggleton P (2014) First comparison of quantitative estimates of termite biomass and abundance reveals strong intercontinental differences. J Trop Ecol 30(2):143–152. https://doi.org/10.1017/S0266467413000898
Abe T, Masumoto T (1979) Studies on the distribution and ecological role of termites in a lowland rain forest of West Malaysia. Food and feeding habits of termites in Pasoh Forest Reserve. Jpn J Ecol 29(4):121–135. https://doi.org/10.18960/seitai.29.4_337
Eggleton P, Bignell DE, Sands WA, Mawdsley NA, Lawton JH, Wood TG, Bignell NC (1996) The diversity, abundance, and biomass of termites under differing levels of disturbance in the Mbalmayo Forest Reserve, southern Cameroon. Philos Trans R Soc Lond B 351(1335):51–68. https://doi.org/10.1098/rstb.1996.0004
Mikaelyan A, Meuser K, Brune A (2017) Microenvironmental heterogeneity of gut compartments drives bacterial community structure in wood-and humus-feeding higher termites. FEMS Microbiol Ecol 93(1):fiw10. https://doi.org/10.1093/femsec/fiw210
Mikaelyan A, Strassert JFH, Tokuda G, Brune A (2014) The fibre-associated cellulolytic bacterial community in the hindgut of wood-feeding higher termites (Nasutitermes spp.). Environ Microbiol 16(9):2711–2722. https://doi.org/10.1111/1462-2920.12425
Tokuda G, Mikaelyan A, Fukui C, Matsuura Y, Watanabe H, Fujishima M, Brune A (2018) Fiber-associated spirochetes are major agents of hemicellulose degradation in the hindgut of wood-feeding higher termites. Proc Natl Acad Sci 115(51):E11996–E12004. https://doi.org/10.1073/pnas.1810550115
Hongoh Y, Deevong P, Inoue T, Moriya S, Trakulnaleamsai S, Ohkuma M, Vongkaluang C, Noparatnaraporn N, Kudol T (2005) Intra- and interspecific comparisons of bacterial diversity and community structure support coevolution of gut microbiota and termite host. Appl Environ Microbiol 71(11):6590–6599. https://doi.org/10.1128/AEM.71.11.6590-6599.2005
Ji R, Kappler A, Brune A (2000) Transformation and mineralization of synthetic 14C-labeled humic model compounds by soil-feeding termites. Soil Biol Biochem 32(8–9):1281–1291. https://doi.org/10.1016/S0038-0717(00)00046-8
Ji R, Brune A (2001) Transformation and mineralization of 14C-labeled cellulose, peptidoglycan, and protein by the soil-feeding termite Cubitermes orthognathus. Biol Fertil Soils 33(2):166–174. https://doi.org/10.1007/s003740000310
Ji R, Brune A (2005) Digestion of peptidic residues in humic substances by an alkali-stable and humic-acid-tolerant proteolytic activity in the gut of soil-feeding termites. Soil Biol Biochem 37(9):1648–1655. https://doi.org/10.1016/j.soilbio.2005.01.026
Ngugi DK, Ji R, Brune A (2011) Nitrogen mineralization, denitrification, and nitrate ammonification by soil-feeding termites: a 15N-based approach. Biogeochemistry 103(1–3):355–369. https://doi.org/10.1007/s10533-010-9478-6
Ngugi DK, Brune A (2012) Nitrate reduction, nitrous oxide formation, and anaerobic ammonia oxidation to nitrite in the gut of soil-feeding termites (Cubitermes and Ophiotermes spp.). Environ Microbiol 14(4):860–871. https://doi.org/10.1111/j.1462-2920.2011.02648.x
Ji R, Brune A (2006) Nitrogen mineralization, ammonia accumulation, and emission of gaseous NH3 by soil-feeding termites. Biogeochemistry 78(3):267–283. https://doi.org/10.1007/s10533-00
Breznak JA (2000) Ecology of prokaryotic microbes in the guts of wood- and litter-feeding termites. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 209–231. https://doi.org/10.1007/978-94-017-3223-9_10
Baerends GP (1958) Comparative methods and the concept of homology in the study of behaviour. Arch Neerl Zool 13(Suppl 1):401–417
Wenzel JW (1992) Behavioral homology and phylogeny. Annu Rev Ecol Syst 23(1):361–381. https://doi.org/10.1146/annurev.es.23.110192.002045
Potrikus CJ, Breznak JA (1981) Gut bacteria recycle uric acid nitrogen in termites: a strategy for nutrient conservation. Proc Natl Acad Sci USA 78(7):4601–4605. https://doi.org/10.1073/pnas.78.7.4601
Higashi M, Abe T, Burns TP (1992) Carbon—nitrogen balance and termite ecology. Proc R Soc B Lond 249(1326):303–308. https://doi.org/10.1098/rspb.1992.0119
Machida M, Kitade O, Miura T, Matsumoto T (2001) Nitrogen recycling through proctodeal trophallaxis in the Japanese damp-wood termite Hodotermopsis japonica (Isoptera, Termopsidae). Insect Soc 48(1):52–56. https://doi.org/10.1007/PL00001745
Chouvenc T (2020) Limited survival strategy in starving subterranean termite colonies. Insect Soc 67(1):71–82. https://doi.org/10.1007/s00040-019-00729-5
Stadler B, Dixon AFG (1999) Ant attendance in aphids: why different degrees of myrmecophily? Ecol Entomol 24(3):363–369. https://doi.org/10.1046/j.1365-2311.1999.00195.x
Chouvenc T, Elliott ML, Su N-Y (2011) Rich microbial community associated with the nest material of Reticulitermes flavipes (Isoptera: Rhinotermitidae). Florida Entomol 94(1):115–116. https://doi.org/10.1653/024.094.0117
Chouvenc T, Bardunias P, Efstathion CA, Chakrabarti S, Elliott ML, Giblin-Davis R, Su N-Y (2013) Resource opportunities from the nest of dying subterranean termite (Isoptera: Rhinotermitidae) colonies: a laboratory case of ecological succession. Ann Entomol Soc Am 106(6):771–778. https://doi.org/10.1603/AN13104
Schulten HR, Schnitzer M (1997) The chemistry of soil organic nitrogen: a review. Biol Fertil Soils 26(1):1–15. https://doi.org/10.1007/s003740050335
Lavelle P, Spain AV (2001) Soil ecology. Kluwer Academic, Dordrecht. https://doi.org/10.1007/0-306-48162-6
Marynowska M, Goux X, Sillam-Dussès D, Rouland-Lefevre C, Halder R, Wilmes P, Gawron P, Roisin Y, Delfosse P, Calusinska M (2020) Compositional and functional characterisation of biomass-degrading microbial communities in guts of plant fibre-and soil-feeding higher termites. Microbiome 8(96):1–18. https://doi.org/10.1186/s40168-020-00872-3
Brune A, Kühl M (1996) pH profiles of the extremely alkaline hindguts of soil-feeding termites (Isoptera: Termitidae) determined with microelectrodes. J Insect Physiol 42(11–12):1121–1127. https://doi.org/10.1016/S0022-1910(96)00036-4
Brune A (2014) Symbiotic digestion of lignocellulose in termite guts. Nat Rev Microbiol 12(3):168–180. https://doi.org/10.1038/nrmicro3182
Lo N, Tokuda G, Watanabe H (2010) Evolution and function of endogenous termite cellulases. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 51–67. https://doi.org/10.1007/978-90-481-3977-4_3
Krishna K, Weesner FM (1969) Biology of termites, vol 1. Academic Press, New York. https://doi.org/10.1016/B978-0-12-395529-6.X5001-6
Grassé P-P (1985) Termitologia. Anatomie–physiologie–biologie–systématique des termites, comportement, socialité, écologie, evolution, systematique, vol 3. Masson, Paris
Engel MS, Grimaldi DA, Nascimbine PC, Singh H (2011) The termites of Early Eocene Cambay amber, with the earliest record of the Termitidae (Isoptera). ZooKeys 148:105–123. https://doi.org/10.3897/zookeys.148.1797
Krishna K, Grimaldi DA (2009) Diverse Rhinotermitidae and Termitidae (Isoptera) in Dominican Amber. Am Mus Novitates 3640:1–48. https://doi.org/10.1206/633.1
Eggleton P (2010) An introduction to termites: biology, taxonomy and functional morphology. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 1–26. https://doi.org/10.1007/978-90-481-3977-4_1
Scheffrahn RH, Bourguignon T, Bordereau C, Hernandez-Aguilar RA, Oelze VM, Dieguez P, Šobotník J, Pascual-Garrido A (2017) White-gutted soldiers: simplification of the digestive tube for a non-particulate diet in higher old world termites (Isoptera: Termitidae). Insect Soc 64(4):525–533. https://doi.org/10.1007/s00040-017-0572-9
Acknowledgements
TC thanks Nan-Yao Su, Paul Bardunias, Aaron Mullins for the many discussions over the years about the various aspects of evolutionary trajectories in termites. MSE is grateful to the late Kumar Krishna for his many stimulating discussions regarding termites and their evolution. All authors are thankful to all the participants of the ‘2019 termite course’ (Ft Lauderdale, FL), the event that nurtured this collaboration.
Funding
This study was supported in part by, a grant from USDA National Institute of Food and Agriculture Hatch projects number FLA-FLT 005660 (TC), by a NSF-DEB grant, under the agreement no. 1754083 (TC), by the project IGA 20205014 realized at Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague (JŠ and TB), and by the subsidiary funding to OIST (TB).
Author information
Authors and Affiliations
Contributions
TC and TB jointly prepared the initial draft, and JŠ and MSE contributed additional information. All authors were actively involved with the development of the main narrative of this review.
Corresponding authors
Ethics declarations
Conflict of interest
The author(s) declare no competing interests
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Chouvenc, T., Šobotník, J., Engel, M.S. et al. Termite evolution: mutualistic associations, key innovations, and the rise of Termitidae. Cell. Mol. Life Sci. 78, 2749–2769 (2021). https://doi.org/10.1007/s00018-020-03728-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00018-020-03728-z
Keywords
Profiles
- Michael S. Engel View author profile