Skip to main content
Log in

The glycine transporter 1 inhibitor SSR504734 enhances working memory performance in a continuous delayed alternation task in C57BL/6 mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Inhibition of the glycine transporter 1 (GlyT1) activity increases extra-cellular glycine availability in the CNS. At glutamatergic synapses, increased binding to the glycine-B site located in the N-methyl-d-aspartate receptor (NMDAR) can enhance neurotransmission via NMDARs. Systemic treatment of 2-chloro-N-[(S)-phenyl [(2S)-piperidin-2-yl] methyl]-3-trifluoromethyl benzamide, monohydrochloride (SSR504734), a selective GlyT1 inhibitor, is effective against social recognition impairment induced by neonatal phencyclidine treatment and enhances pre-pulse inhibition in a mouse strain (DBA/2) with intrinsic sensorimotor gating deficiency, suggesting that SSR504734 may be an effective cognitive enhancer.

Objective

The objective of the study was to examine if SSR504734 exhibits a promnesic effect on working memory function in wild-type C57BL/6 mice using an automatic continuous alternation task.

Materials and methods

Hungry mice were trained to alternate their nose pokes between two food magazines across successive discrete trials in an operant chamber in order to obtain food reward. Correct choice on a given trial thus followed a non-matching or win-shift rule in relation to the preceding trial, with manipulation of the demand on memory retention, by varying the delay between successive trials.

Results

Pre-treatment with SSR504734 (30 mg/kg, i.p.) improved choice accuracy when the delay from the previous trial was extended to 12–16 s. Furthermore, a dose–response analysis (3, 10, 30 mg/kg) revealed a clear dose-dependent efficacy of the drug: 3 mg/kg was without effect, whilst 10 mg/kg led to an intermediate enhancement in performance.

Conclusion

The present findings represent the first demonstration of the promnesic effects of SSR504734 under normal physiological conditions, lending further support to the suggestion of its potential as a cognitive enhancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Aggleton JP, Hunt PR, Rawlins JNP (1986) The effects of hippocampal lesions upon spatial and non-spatial tests of working memory. Behav Brain Res 19:133–146

    Article  PubMed  CAS  Google Scholar 

  • Aggleton JP, Keith AB, Rawlins JN, Hunt PR, Sahgal A (1992) Removal of the hippocampus and transection of the fornix produce comparable deficits on delayed non-matching to position by rats. Behav Brain Res 52:61–71

    Article  PubMed  CAS  Google Scholar 

  • Aragon C, Lopez-Corcuera B (2005) Glycine transporters: crucial roles of pharmacological interest revealed by gene deletion. Trends Pharmacol Sci 26:283–286

    Article  PubMed  CAS  Google Scholar 

  • Attwell D, Barbour B, Szatkowski M (1993) Nonvesicular release of neurotransmitter. Neuron 11:401–407

    Article  PubMed  CAS  Google Scholar 

  • Bannerman DM, Rawlins JN, Good MA (2006) The drugs don’t work—or do they? Pharmacological and transgenic studies of the contribution of NMDA and GluR-A-containing AMPA receptors to hippocampal-dependent memory. Psychopharmacology (Berl) 188:552–566

    Article  CAS  Google Scholar 

  • Bannerman DM, Niewoehner B, Lyon L, Romberg C, Schmitt WB, Taylor A, Sanderson DJ, Cottam J, Sprengel R, Seeburg PH, Köhr G, Rawlins JNP (2008) NMDA receptor subunit NR2A is required for rapidly acquired spatial working memory but not incremental spatial reference memory. J Neurosci 28:3623–630

    Article  PubMed  CAS  Google Scholar 

  • Barch DM (2004) Pharmacological manipulation of human working memory. Psychopharmacology (Berl) 174:126–135

    Article  CAS  Google Scholar 

  • Berger AJ, Dieudonné S, Ascher P (1998) Glycine uptake governs glycine site occupancy at NMDA receptors of excitatory synapses. J Neurophysiol 80:3336–3340

    PubMed  CAS  Google Scholar 

  • Bergeron R, Meyer TM, Coyle JT, Greene RW (1998) Modulation of N-methyl-D-aspartate receptor function by glycine transport. Proc Natl Acad Sci USA 95:15730–15734

    Article  PubMed  CAS  Google Scholar 

  • Betz H, Laube B (2006) Glycine receptors: recent insights into their structural organization and functional diversity. J Neurochem 97:1600–1610

    Article  PubMed  CAS  Google Scholar 

  • Bitsios P, Giakoumaki SG, Theou K, Frangou S (2006) Increased prepulse inhibition of the acoustic startle response is associated with better strategy formation and execution times in healthy males. Neuropsychologia 44:2494–2499

    Article  PubMed  Google Scholar 

  • Bräuner-Osborne H, Egenbjerg J, Nielsen E, Madsen U, Krogsgaard-Larsen P (2000) Ligands for glutamate receptors: design and therapeutic prospects. J Med Chem 43:2609–2645

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Muhlhauser M, Yang CR (2003) Glycine tranporter-1 blockade potentiates NMDA-mediated responses in rat prefrontal cortical neurons in vitro and in vivo. J Neurophysiol 89:691–703

    Article  PubMed  CAS  Google Scholar 

  • Collingridge GL, Bliss TVP (1995) Memories of NMDA receptors and LTP. Trends Neurosci 18:54–56

    Article  PubMed  CAS  Google Scholar 

  • Coyle JT, Tsai G (2004) NMDA receptor function, neuroplasticity, and the pathophysiology of schizophrenia. Int Rev Neurobiol 59:491–515

    Article  PubMed  CAS  Google Scholar 

  • Cubelos B, Gimenez C, Zafra F (2005a) Localization of the GLYT1 glycine transporter at glutamatergic synapses in the rat brain. Cereb Cortex 15:448–459

    Article  PubMed  Google Scholar 

  • Cubelos B, Gonzales-Gonzales IM, Gimenez C, Zafra F (2005b) The scaffolding protein PSD-95 interacts with the glycine transporter GLYT1 and impairs its internalization. J Neurochem 95:1047–1058

    Article  PubMed  CAS  Google Scholar 

  • D’Souza DC, Gil R, Cassello K, Morrissey K, Abi-Saab D, White J, Sturwold R, Bennett A, Karper LP, Zuzarte E (2000) IV glycine and oral D-cycloserine effects on plasma and CSF amino acids in healthy humans. Biol Psychiat 47:450–462

    Article  PubMed  Google Scholar 

  • Danysz W, Parsons AC (1998) Glycine and N-methyl-D-aspartate receptors: physiological significance and possible therapeutic applications. Pharmacol Rev 50:597–664

    PubMed  CAS  Google Scholar 

  • Danysz W, Wroblewski JT, Brooker G, Costa E (1987) Modulation of excitatory amino acid transmission by phencyclidine and glycine in the rat cerebellum in vivo. Soc Neurosci Abstr 13:383

    Google Scholar 

  • Danysz W, Wroblewski JT, Brooker G, Costa E (1989) Modulation of glutamate receptors by phencyclidine and glycine in the rat cerebellum: cGMP increase in vivo. Brain Res 479:270–276

    Article  PubMed  CAS  Google Scholar 

  • Depoortère R, Estenne-Bouhtou G, Coste A, Lanneau C (2005) Neurochemical, electrophysiological and pharmalogical profiles of the selective inhibitor of the glycine transporter-1 SSR504734, a potential new type of antipsychotic. Neuropsychopharmacology 30:1963–1985

    Article  PubMed  CAS  Google Scholar 

  • Dunnett SB (1993) Operant delayed matching and non-matching to position in rats. In: Sahgal A (ed) Behavioural neuroscience. A practical approach, vol. 1.. IRL, Oxford, pp 123–136

    Google Scholar 

  • Dunnett SB, Wareham AT, Morres EM (1990) Cholinergic blockade in prefrontal cortex and hippocampus disrupts short-term memory in rats. Neuroreport 1:61–64

    Article  PubMed  CAS  Google Scholar 

  • Duffy S, Labrie V, Roder JC (2008) D-serine augments NMDA-NR2B receptor-dependent hippocampal long-term depression and spatial reversal learning. Neuropsychopharmacology 33:1004–1018

    Article  PubMed  CAS  Google Scholar 

  • Giakoumaki SG, Bitsios P, Frangou S (2006) The level of prepulse inhibition in healthy individuals may index cortical modulation of early information processing. Brain Res 1078:168–170

    Article  PubMed  CAS  Google Scholar 

  • Graham FK (1975) The more or less startling effects of weak prestimulation. Psychophysiology 12:238–248

    Article  PubMed  CAS  Google Scholar 

  • Harich S, Gross G, Bespalov A (2007) Stimulation of the metabotropic glutamate 2/3 receptor attenuates social novelty discrimination deficits induced by neonatal phencyclidine treatment. Psychopharmacology (Berl) 192:511–519

    Article  CAS  Google Scholar 

  • Heresco-Levy U (2000) N-Methyl-D-aspartate (NMDA) receptor-based treatment approaches in schizophrenia: the first decade. Int J Neuropsychopharmacol 3:243–258

    Article  PubMed  CAS  Google Scholar 

  • Heresco-Levy U, Javitt DC, Ermilov M, Mor, del C, Horowitz A, Kelly D (1996) Double-blind, placebo-controlled, crossover trial of glycine adjuvant therapy for treatment-resistant schizophrenia. Br J Psychiat 169:610–617

    Article  CAS  Google Scholar 

  • Heresco-Levy U, Javitt DC, Ermilov M, Mordel C, Silipo G, Lichtenstein M (1999) Efficacy of high-dose glycine in the treatment of enduring negative symptoms of schizophrenia. Arch Gen Psychiat 56:29–36

    Article  PubMed  CAS  Google Scholar 

  • Heresco-Levy U, Ermilov M, Lichtenberg P, Bar G, Javitt DC (2004) High-dose glycine added to olanzapine and risperidone for the treatment of schizophrenia. Biol Psychiat 55:165–171

    Article  PubMed  CAS  Google Scholar 

  • Honig WK (1978) Studies of working memory in the pigeon. In: Hulse SH, Fowler H, Honig WK (eds) Cognitive processes in animal behavior. Erlbaum, Hillsdale, pp 211–248

    Google Scholar 

  • Javitt DC, Doneshka P, Zylberman I, Ritter W, Vaughan HG Jr (1993) Impairment of early cortical processing in schizophrenia: an event-related potential confirmation study. Biol Psychiat 33:513–519

    Article  PubMed  CAS  Google Scholar 

  • Javitt DC, Silipo G, Cienfuegos A, Shelley AM, Bark N, Park M, Lindenmayer JP, Suckow R, Zukin SR (2001) Adjunctive high dose glycine in the treatment of schizophrenia. Int J Neuropsychopharmacol 4:385–391

    Article  PubMed  CAS  Google Scholar 

  • Jonides J, Nee DE (2006) Brain mechanisms of proactive interference in working memory. Neuroscience 139:181–193

    Article  PubMed  CAS  Google Scholar 

  • Kinney GG, Sur C (2005) Glycine site modulators and transporter-1 inhibitors as novel therapeutic targets for the treatment of schizophrenia. Curr Neuropharmacol 3:35–43

    Article  CAS  Google Scholar 

  • Kinney GG, Sur C, Burno M, Mallorga PJ, Williams JB, Figueroa DJ, Wittmann M, Lemaire W, Conn PJ (2003) The glycine transporter type 1 inhibitor N-[3-(4_-fluorophenyl)-3-(4_-phenylphenoxy)propyl]-sarcosine potentiates NMDA receptor-mediated responses in vivo and produces an antipsychotic profile in rodent behavior. J Neurosci 23:7586–7591

    PubMed  CAS  Google Scholar 

  • Lane HY, Chang YC, Liu YC, Chiu CC, Tsai GE (2005) Sarcosine or D-serine add-on treatment for acute exacerbation of schizophrenia: a randomized, double-blind, placebo-controlled study. Arch Gen Psychiat 62:1196–1204

    Article  PubMed  CAS  Google Scholar 

  • Laube B, Maksay G, Schemm R, Betz H (2002) Modulation of glycine receptor function: a novel approach for therapeutic intervention at inhibitory synapses? Trends Pharmacol Sci 23:519–527

    Article  PubMed  CAS  Google Scholar 

  • Lechner SM (2006) Glutamate-based therapeutic approaches: inhibitors of glycine transport. Curr Opin Pharmacol 6:75–81

    Article  PubMed  CAS  Google Scholar 

  • Leonetti M, Desvignes C, Bougault I, Souilhac J, Oury-Donat F, Steinberg R (2006) 2-Chloro-N-[(S)-phenyl [(2S)-piperidin-2-yl] methyl]-3-trifluoromethyl benzamide, monohydrochloride, an inhibitor of the glycine transporter type 1, increases evoked-dopamine release in the rat nucleus accumbens in vivo via an enhanced glutamatergic neurotransmission. Neuroscience 137:555–564

    Article  PubMed  CAS  Google Scholar 

  • Leung S, Croft RJ, O’Neill BV, Nathan PJ (2008) Acute high-dose glycine attenuates mismatch negativity (MMN) in healthy human controls. Psychopharmacology (Berl) 196:451–460

    Article  CAS  Google Scholar 

  • Marquis JP, Audet MC, Doré FY, Goulet S (2007) Delayed alteration performance following subchronic phencyclidine administration in rats depends on task parameters. Prog Neuropsychopharmacol Biol Psychiatry 31:1108–1112

    Article  PubMed  CAS  Google Scholar 

  • Martina M, Gorfinkel Y, Halman S, Lowe JA, Periyalwar P, Schmidt CJ, Bergeron R (2004) Glycine transporter type 1 blockade changes NMDA receptor-mediated responses and LTP in hippocampal CA1 pyramidal cells by altering extracellular glycine levels. J Physiol 557:489–500

    Article  PubMed  CAS  Google Scholar 

  • McBain CJ, Mayer ML (1994) N-Methyl-D-aspartic acid receptor structure and function. Physiol Rev 74:723–760

    PubMed  CAS  Google Scholar 

  • McHugh SB, Niewoehner B, Rawlins JNP, Bannerman DM (2008) Dorsal hippocampal N-methyl-D-aspartate receptors underlie spatial working memory performance during non-matching to place testing on the T-maze. Behav Brain Res 186:41–47

    Article  PubMed  CAS  Google Scholar 

  • Mehta MA, Riedel WJ (2006) Dopaminergic enhancement of cognitive function. Current Pharmaceutical Design 12:2487–2500

    Article  PubMed  CAS  Google Scholar 

  • Milan MJ (2002) N-Methyl-D-aspartate receptor-coupled glycine-B receptors in the pathogenesis and treatment of schizophrenia: a critical review. Curr Drug Targets CNS Neurol Disord 1:191–213

    Article  Google Scholar 

  • Molander A, Lidö HH, Löf E, Eriscon M, Söderpalm B (2007) The glycine reuptake inhibitor Org 25935 decreases ethanol intake and preference in mal wistar rats. Alcohol 42:11–18

    CAS  Google Scholar 

  • Monahan JB, Handelmann GE, Hood WF, Cordi AA (1989) D-Cycloserine, a positive modulator of the N-methyl-D-aspartate receptor, enhances performance of learning tasks in rats. Pharmacol Biochem Behav 34:649–653

    Article  PubMed  CAS  Google Scholar 

  • Morris RG (1989) Synaptic plasticity and learning: selective impairment of learning rats and blockade of long-term potentiation in vivo by the N-methyl-D-aspartate receptor antagonist AP5. J Neurosci 19:3040–3057

    Google Scholar 

  • Nong Y, Huang YQ, Ju Wa, Kalia LV, Ahmadian G, Wang YT, Salter MW (2003) Glycine binding primes NMDA receptor internalization. Nature 422:302–307

    Article  PubMed  CAS  Google Scholar 

  • Nunnink M, Davenport RA, Ortega B, Houpt TA (2007) D-Cycloserine enhances conditioned taste aversion learning in rats. Pharmacol Biochem Behav 87:321–330

    Article  PubMed  CAS  Google Scholar 

  • Olney JW, Farber NB (1995) Glutamate receptor dysfunction and schizophrenia. Arch Gen Psychiat 52:998–1007

    PubMed  CAS  Google Scholar 

  • Olton DS (1979) Mazes, maps, and memory. Am Psychol 34:583–596

    Article  PubMed  CAS  Google Scholar 

  • Olton DS, Becker JT, Handelmann GE (1979) Hippocampus, space and memory. Behav Brain Sci 2:313–365

    Google Scholar 

  • Palmer C, Ellis KA, O'Neill BV, Croft RJ, Leung S, Oliver C, Wesnes KA, Nathan PJ (2008) The cognitive effects of modulating the glycine site of the NMDA receptor with high-dose glycine in healthy controls. Hum Psychopharmacol 23:151–159

    Article  PubMed  CAS  Google Scholar 

  • Pussinen R, Sirviö P (1999) Effects of D-cycloserine, a positive modulator of N-methyl-D-aspartate receptors, and ST 587, a putative alpha-1 adrenergic agonist, individually and in combination, on the non-delayed and delayed foraging behaviour of rats assessed in the radial arm. J Psychopharmacol 13:171–179

    Article  PubMed  CAS  Google Scholar 

  • Rajendra S, Lynch JW, Schofield PR (1997) The glycine receptor. Pharmacol Ther 73:121–146

    Article  PubMed  CAS  Google Scholar 

  • Rawlins JNP, Tsaltas E (1983) The hippocampus, time and working memory. Behav Brain Res 10:233–262

    Article  PubMed  CAS  Google Scholar 

  • Sahakian B, Morein-Zamir S (2007) Professor’s little helper. Nature 450:1157–1159

    Article  PubMed  CAS  Google Scholar 

  • Sanderson DJ, Gray A, Simon A, Taylor AM, Deacon RM, Seeburg PH, Sprengel R, Good MA, Rawlins JN, Bannerman DM (2007) Deletion of glutamate receptor-A (GluR-A) AMPA receptor sunbunits impairs one-trial spatial memory. Behav Neurosci 121:559–569

    Article  PubMed  CAS  Google Scholar 

  • Shoham S, Javitt DC, Heresco-Levy U (1999) High dose glycine nutrition affects glial cell morphology in rat hippocampus and cerebellum. Int J Neuropsychopharmacol 2:35–40

    Article  PubMed  CAS  Google Scholar 

  • Singer P, Boison D, Möhler H, Feldon J, Yee BK (2007a) Enhanced recognition memory following glycine transporter 1 deletion in forebrain neurons. Behav Neurosci 121:815–25

    Article  PubMed  Google Scholar 

  • Singer P, Feldon J, Yee BK (2007b) Interference of glycine transporter 1: modulation of cognitive functions via activation of glycine-B site of the NMDA receptor. CNS Agents Med Chem 7:259–268

    CAS  Google Scholar 

  • Stanhope KJ, McLenachan AP, Dourish CT (1995) Dissociation between cognitive and motor/motivational deficits in the delayed matching to position test: effects of scopolamine, 8-OH-DPAT and EAA antagonists. Psychopharmacology (Berl) 122:268–280

    Article  CAS  Google Scholar 

  • Swerdlow NR, Braff DL, Geyer MA (2000) Animal models of deficient sensorimotor gating: what we know, what we think we know, and what we hope to know soon. Behav Pharmacol 11:185–204

    PubMed  CAS  Google Scholar 

  • Tang YP, Shimizu E, Dube GR, Rampon C, Kerchner GA, Zhuo M, Liu G, Tsien JZ (1999) Genetic enhancement of learning and memory in mice. Nature 401:63–69

    Article  PubMed  CAS  Google Scholar 

  • Tsai G, Lane HY, Yang P, Chong MY, Lange N (2004) Glycine transporter I inhibitor, N-methylglycine (sarcosine), added to antipsychotics for the treatment of schizophrenia. Biol Psychiat 55:452–456

    Article  PubMed  CAS  Google Scholar 

  • Umbricht D, Krljes S (2005) Mismatch negativity in schizophrenia: a meta-analysis. Schizophr Res 76:1–23

    Article  PubMed  Google Scholar 

  • Yee BK, Rawlins JNP (1994) The effects of hippocampal formation ablation or fimbria-fornix section on performance of a nonspatial radial arm maze task by rats. J Neurosci 14:3766–3774

    PubMed  CAS  Google Scholar 

  • Yee BK, Rawlins JNP (1998) A comparison between the effects of medial septal lesions and entorhinal cortex lesions on performance of nonspatial working memory tasks and reversal learning. Behav Brain Res 94:281–300

    Article  PubMed  CAS  Google Scholar 

  • Yee BK, Balic E, Singer P, Schwerdel C, Grampp T, Gabernet L, Knuesel I, Benke D, Feldon J, Mohler H, Boison D (2006) Disruption of glycine transporter 1 restricted to forebrain neurons is associated with a procognitive and antipsychotic phenotypic profile. J Neurosci 26:3169–3181

    Article  PubMed  CAS  Google Scholar 

  • Zlomuzica A, De Souza Silva MA, Huston JP, Dere E (2007) NMDA receptor modulation by D-cycloserine promotes episodic-like memory in mice. Psychopharmacology (Berl) 193:503–509

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present study was supported by the Swiss Federal Institute of Technology (ETH) Zurich and the NCCR Neural Plasticity & Repair (funded by the Swiss National Science Foundation). The authors are also grateful to Dr. Bernard Scatton (Sanofi-Aventis, Paris, France) for his support for the present study and in providing the compound SSR504734. The authors also thank Peter Schmid for his excellent technical support, and the animal husbandry staff at the Laboratory of Behavioural Neurobiology, for their maintenance of the subjects used in the experiments.

Disclosure

The experimental manipulations and procedures described here had been previously approved by the Swiss Cantonal Veterinary Office and conform to the ethical standards required by the Swiss Act and Ordinance on Animal Protection and the European Council Directives 86/609/EEC. No conflicts of interest are to be declared by any of the authors of the present article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin K. Yee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singer, P., Feldon, J. & Yee, B.K. The glycine transporter 1 inhibitor SSR504734 enhances working memory performance in a continuous delayed alternation task in C57BL/6 mice. Psychopharmacology 202, 371–384 (2009). https://doi.org/10.1007/s00213-008-1286-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-008-1286-5

Keywords