Skip to main content
Springer Nature Link
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Advances in Atmospheric Sciences
  3. Article

CAS FGOALS-f3-L Model Datasets for CMIP6 Historical Atmospheric Model Intercomparison Project Simulation

  • Data Description Article
  • Open access
  • Published: 03 July 2019
  • Volume 36, pages 771–778, (2019)
  • Cite this article
Download PDF

You have full access to this open access article

Advances in Atmospheric Sciences Aims and scope Submit manuscript
CAS FGOALS-f3-L Model Datasets for CMIP6 Historical Atmospheric Model Intercomparison Project Simulation
Download PDF
  • Bian He1,2,3,
  • Qing Bao1,2,
  • Xiaocong Wang1,2,
  • Linjiong Zhou4,
  • Xiaofei Wu5,
  • Yimin Liu1,2,3,
  • Guoxiong Wu1,2,3,
  • Kangjun Chen1,
  • Sicheng He6,
  • Wenting Hu1,3,
  • Jiandong Li1,3,
  • Jinxiao Li1,3,
  • Guokui Nian1,3,
  • Lei Wang1,3,
  • Jing Yang6,
  • Minghua Zhang1 &
  • …
  • Xiaoqi Zhang7,1 
  • 3013 Accesses

  • 141 Citations

  • 41 Altmetric

  • 7 Mentions

  • Explore all metrics

Abstract

The outputs of the Chinese Academy of Sciences (CAS) Flexible Global Ocean-Atmosphere-Land System (FGOALS-f3-L) model for the baseline experiment of the Atmospheric Model Intercomparison Project simulation in the Diagnostic, Evaluation and Characterization of Klima common experiments of phase 6 of the Coupled Model Intercomparison Project (CMIP6) are described in this paper. The CAS FGOALS-f3-L model, experiment settings, and outputs are all given. In total, there are three ensemble experiments over the period 1979–2014, which are performed with different initial states. The model outputs contain a total of 37 variables and include the required three-hourly mean, six-hourly transient, daily and monthly mean datasets. The baseline performances of the model are validated at different time scales. The preliminary evaluation suggests that the CAS FGOALS-f3-L model can capture the basic patterns of atmospheric circulation and precipitation well, including the propagation of the Madden-Julian Oscillation, activities of tropical cyclones, and the characterization of extreme precipitation. These datasets contribute to the benchmark of current model behaviors for the desired continuity of CMIP.

摘 要

本文介绍了中国科学院大气物理研究所开发的CAS FGOALS-f3-L 气候系统模式参加第六次国际耦合模式比较计划 (CMIP6)的DECK试验(Diagnostic, Evaluation and Characterization of Klima common experiments)中全球大气环流模式(AMIP)模拟数据, 其中包括CAS FGOALS-f3-L模式的动力框架, 物理过程简介以及模式试验设计, 数据信息以及初步评估结果. 模式采用时间滞后法产生不同初始场的三个集合成员, 并提供1979–2014年的模拟结果. 模式输出包括37个变量, 涉及3小时平均, 6小时瞬时, 日平均和月平均数据. 本文还评估了模式在不同时间尺度上的基本模拟性能. 结果表明CAS FGOALS-f3-L模式能够很好的模拟出大尺度全球大气环流和降水的基本特征, 能够很好的模拟出降水和850hPa风的MJO传播特征, 以及台风的活动和极端降水的发生频次特征. 该数据集贡献于CMIP计划在模式发展评估上的连续性.

Article PDF

Download to read the full article text

Similar content being viewed by others

Overview of the CMIP6 Historical Experiment Datasets with the Climate System Model CAS FGOALS-f3-L

Article Open access 23 May 2020

CAS FGOALS-f3-H Dataset for the High-Resolution Model Intercomparison Project (HighResMIP) Tier 2

Article Open access 02 July 2022

CAS FGOALS-f3-L Model Datasets for CMIP6 GMMIP Tier-1 and Tier-3 Experiments

Article Open access 10 December 2019

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.
  • Climate Sciences
  • CRISPR-Cas systems
  • Model plants
  • Model Building and Simulation
  • Numerical Simulation
  • Climate and Earth System Modelling
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  • Accadia, C., S. Mariani, M. Casaioli, A. Lavagnini, and A. Speranza, 2003: Sensitivity of precipitation forecast skill scores to bilinear interpolation and a simple nearest-neighbor average method on high-resolution verification grids. Wea. Forecasting, 18, 918–932, https://doi.org/10.1175/1520-0434(2003)018<0918:SOPFSS>2.0.CO;2.

    Article  Google Scholar 

  • Adler, R. F., and Coauthors, 2003: The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). Journal of Hydrometeorology, 4, 1147–1167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    Article  Google Scholar 

  • Bao, Q., G. X. Wu, Y. M. Liu, J. Yang, Z. Z. Wang, and T. J. Zhou, 2010: An introduction to the coupled model FGOALS1.1-s and its performance in East Asia. Adv. Atmos. Sci., 27(5), 1131–1142, https://doi.org/10.1007/s00376-010-9177-1.

    Article  Google Scholar 

  • Bao, Q., and Coauthors, 2013: The flexible global ocean-atmosphere-land system model, spectral version 2: FGOALS-s2. Adv. Atmos. Sci., 30(3), 561–576, https://doi.org/10.1007/s00376-012-2113-9.

    Article  Google Scholar 

  • Bao, Q., X. F. Wu, J. X. Li, L. Wang, B. He, X. C. Wang, Y. M. Liu, and G. X. Wu, 2019: Outlook for El Nino and the Indian Ocean Dipole in autumn-winter 2018–2019. Chinese Science Bulletin, 64, 73–78, https://doi.org/10.1360/N972018-00913. (in Chinese)

    Article  Google Scholar 

  • Bretherton, C. S., and S. Park, 2009: A new moist turbulence parameterization in the community atmosphere model. J. Climate, 22(12), 3422–3448, https://doi.org/10.1175/2008jcli2556.1.

    Article  Google Scholar 

  • Clough, S. A., M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. J. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown, 2005: Atmospheric radiative transfer modeling: A summary of the AER codes. Journal of Quantitative Spec-troscopy and Radiative Transfer, 91(2), 233–244, https://doi.org/10.1016/j.jqsrt.2004.05.058.

    Article  Google Scholar 

  • Dee, D. P., and Coauthors, 2011: The ERA-interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828.

    Article  Google Scholar 

  • Edwards, J. M., and A. Slingo, 1996: Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model. Quart. J. Roy. Meteor. Soc., 122, 689–719, https://doi.org/10.1002/qj.49712253107.

    Article  Google Scholar 

  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016.

    Article  Google Scholar 

  • Gates, W. L., 1992: AMIP: The atmospheric model intercompari-son project. Bull. Amer. Meteor. Soc., 73, 1962–1970, https://doi.org/10.1175/1520-0477(1992)073<1962:ATAMIP>2.0.CO;2.

    Article  Google Scholar 

  • Gates, W. L., and Coauthors, 1999: An overview of the results of the atmospheric model intercomparison project (AMIP I). Bull. Amer. Meteor. Soc., 80, 29–56. https://doi.org/10.1175/1520-0477(1999)080<0029:AOOTRO>2.0.CO;2.

    Google Scholar 

  • Harris, L. M., and S.-J. Lin, 2014: Global-to-regional nested grid climate simulations in the GFDL high resolution atmospheric model. J. Climate, 27(13), 4890–4910, https://doi.org/10.1175/JCLI-D-13-00596.1.

    Article  Google Scholar 

  • He, S. C., J. Yang, Q. Bao, L. Wang, and B. Wang, 2019: Fidelity of the observational/reanalysis datasets and global climate models in representation of extreme precipitation in East China. J. Climate, 32(1), 195–212, https://doi.org/10.1175/JCLI-D-18-0104.1.

    Article  Google Scholar 

  • Holtslag, A. A. M., and B. A. Boville, 1993: Local versus nonlocal boundary-layer diffusion in a global climate model. J. Climate, 6, 1825–1842, https://doi.org/10.1175/1520-0442(1993)006<1825:LVNBLD>2.0.CO;2.

    Article  Google Scholar 

  • Huffman, G. J., R. F. Adler, M. M. Morrissey, D. T. Bolvin, S. Curtis, R. Joyce, B. McGavock, and J. Susskind, 2001: Global precipitation at one-degree daily resolution from multisatellite observations. Journal of Hydrometeorology, 2, 36–50, https://doi.org/10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2.

    Article  Google Scholar 

  • Huffman, G. J., and Coauthors, 2007: The TRMM multisatel-lite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. Journal of Hydrometeorology, 8, 38–55, https://doi.org/10.1175/JHM560.1.

    Article  Google Scholar 

  • Hunke, E. C., and W. H. Lipscomb, 2010: CICE: The Los Alamos Sea ice model documentation and software user's manual version 4.1. Tech. Rep. LA-CC-06-012, 675 pp.

    Google Scholar 

  • Hurtt, G. C., and Coauthors, 2011: Harmonization of land-use scenarios for the period 1500-2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Climatic change, 109(1–2), 117, https://doi.org/10.1007/s10584-011-0153-2.

    Article  Google Scholar 

  • Jiang, X., and Coauthors, 2015: Vertical structure and physical processes of the Madden-Julian oscillation: Exploring key model physics in climate simulations. J. Geophys. Res., 120, 4718–4748, https://doi.org/10.1002/2014JD022375.

    Google Scholar 

  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The international best track archive for climate stewardship (IBTrACS): Unifying tropical cyclone data. Bull. Amer. Meteor. Soc., 91(3), 363–376, https://doi.org/10.1175/2009BAMS2755.1.

    Article  Google Scholar 

  • Lamarque, J.-F., and Coauthors, 2012: CAM-chem: Description and evaluation of interactive atmospheric chemistry in the community earth system model. Geoscientific Model Development, 5(2), 369–411, https://doi.org/10.5194/gmd-5-369-2012.

    Article  Google Scholar 

  • Li, J. X., Q. Bao, Y. M. Liu, G. X. Wu, L. Wang, B. He, X. C. Wang, and J. D. Li, 2019: Evaluation of FAMIL2 in simulating the climatology and seasonal-to-interannual variability of tropical cyclone characteristics. Journal of Advances in Modeling Earth Systems, https://doi.org/10.1029/2018MS001506.

    Google Scholar 

  • Lin, S.-J., 2004: A “vertically Lagrangian” finite-volume dynamical core for global models. Mon. Wea. Rev., 132(10), 2293–2307, https://doi.org/10.1175/1520-0493(2004)132<2293:AVLFDC>2.0.CO;2.

    Article  Google Scholar 

  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22(6), 1065–1092, https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    Article  Google Scholar 

  • Liu, H. L., P. F. Lin, Y. Q. Yu, and X. H. Zhang, 2012: The baseline evaluation of LASG/IAP climate system ocean model (LICOM) version 2. Acta Meteorologica Sinica, 26(3), 318–329, https://doi.org/10.1007/s13351-012-0305-y.

    Article  Google Scholar 

  • Matthes, K., and Coauthors, 2017: Solar forcing for CMIP6 (v3.2). Geoscientific Model Development, 10(6), 2247–2302, https://doi.org/10.5194/gmd-10-2247-2017.

    Article  Google Scholar 

  • Meinshausen, M., and Coauthors, 2017: Historical greenhouse gas concentrations for climate modelling (CMIP6). Geoscientific Model Development, 10, 2057–2116, https://doi.org/10.5194/gmd-10-2057-2017.

    Article  Google Scholar 

  • Nordeng, T. E., 1994: Extended versions of the convective parameterization scheme at ECMWF and their impact on the mean and transient activity of the model in the tropics. ECMWF Technical Memo. 206, 41 pp.

  • Oleson, K. W., and Coauthors, 2010: Technical description of version 4.0 of the community land model (CLM). NCAR/TN-478 + STR, 173 pp, https://doi.org/10.5065/D6FB50WZ.

    Google Scholar 

  • Palmer, T. N., G. J. Shutts, and R. Swinbank, 1986: Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an oro-graphic gravity wave drag parametrization. Quart. J. Roy. Meteor. Soc., 112(474), 1001–1039, https://doi.org/10.1002/qj.49711247406.

    Article  Google Scholar 

  • Putman, W. M., and S.-J. Lin, 2007: Finite-volume transport on various cubed-sphere grids. J. Comput. Phys., 227(1), 55–78, https://doi.org/10.1016/j.jcp.2007.07.022.

    Article  Google Scholar 

  • Simpson, R. H., and H. Saffir, 1974: The hurricane disaster— potential scale. Weatherwise, 27(4), 169–186, https://doi.org/10.1080/00431672.1974.9931702.

    Article  Google Scholar 

  • Sun, Z. A., and L. Rikus, 1999: Improved application of exponential sum fitting transmissions to inhomogeneous atmosphere. J. Geophys. Res., 104, 6291–6303, https://doi.org/10.1029/1998JD200095.

    Article  Google Scholar 

  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 1779–1800, https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.

    Article  Google Scholar 

  • Waliser, D., and Coauthors, 2009: MJO simulation diagnostics. J. Climate, 22, 3006–3030, https://doi.org/10.1175/2008JCLI2731.1.

    Article  Google Scholar 

  • Wang, X. C., and M. H. Zhang, 2014: Vertical velocity in shallow convection for different plume types. Journal of Advances in Modeling Earth Systems, 6(2), 478–489, https://doi.org/10.1002/2014MS000318.

    Article  Google Scholar 

  • Wu, G. X., H. Liu, Y. C. Zhao, and W. P. Li, 1996: A nine-layer atmospheric general circulation model and its performance. Adv. Atmos. Sci., 13(1), 1–18, https://doi.org/10.1007/bf02657024.

    Article  Google Scholar 

  • Xiang, B. Q., and Coauthors, 2015: Beyond weather time-scale prediction for hurricane sandy and super typhoon Haiyan in a global climate model. Mon. Wea. Rev., 143(2), 524–535, https://doi.org/10.1175/MWR-D-14-00227.1.

    Article  Google Scholar 

  • Xu, K. M., and D. A. Randall, 1996: A semiempirical cloudiness parameterization for use in climate models. J. Atmos. Sci., 53(21), 3084–3102, https://doi.org/10.1175/1520-0469(1996)053<3084:ASCPFU>2.0.CO;2.

    Article  Google Scholar 

  • Yang, J., Q. Bao, X. C. Wang, and T. J. Zhou, 2012: The tropical intraseasonal oscillation in SAMIL coupled and uncoupled general circulation models. Adv. Atmos. Sci., 29(3), 529–543, https://doi.org/10.1007/s00376-011-1087-3.

    Article  Google Scholar 

  • Zhou, L. J., and Coauthors, 2015: Global energy and water balance: Characteristics from finite-volume Atmospheric Model of the IAP/LASG (FAMIL1). Journal of Advances in Modeling Earth Systems, 7(1), 1–20, https://doi.org/10.1002/2014ms000349.

    Article  Google Scholar 

Download references

Acknowledgements

The research presented in this paper was jointly funded by the National Key Research and development Program of China (Grant No. 2017YFA0604004), the National Natural Science Foundation of China (Grant Nos. 91737306, U1811464, 41530426, 91837101, 41730963, and 91637312).

Author information

Authors and Affiliations

  1. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China

    Bian He, Qing Bao, Xiaocong Wang, Yimin Liu, Guoxiong Wu, Kangjun Chen, Wenting Hu, Jiandong Li, Jinxiao Li, Guokui Nian, Lei Wang, Minghua Zhang & Xiaoqi Zhang

  2. Chinese Academy of Sciences Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, 100101, China

    Bian He, Qing Bao, Xiaocong Wang, Yimin Liu & Guoxiong Wu

  3. University of Chinese Academy of Sciences, Beijing, 100049, China

    Bian He, Yimin Liu, Guoxiong Wu, Wenting Hu, Jiandong Li, Jinxiao Li, Guokui Nian & Lei Wang

  4. Geophysical Fluid Dynamics Laboratory, Princeton, NJ, 08540-6649, USA

    Linjiong Zhou

  5. School of Atmospheric Sciences/Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, Chengdu University of Information Technology, Chengdu, 610225, China

    Xiaofei Wu

  6. State Key Laboratory of Earth Surface Processes and Resource Ecology/Academy of Disaster Reduction and Emergency Management Ministry of Civil Affairs and Ministry of Education, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China

    Sicheng He & Jing Yang

  7. School of Atmospheric Sciences, Nanjing University of Information Science and Technology, Nanjing, 210044, China

    Xiaoqi Zhang

Authors
  1. Bian He
    View author publications

    You can also search for this author inPubMed Google Scholar

  2. Qing Bao
    View author publications

    You can also search for this author inPubMed Google Scholar

  3. Xiaocong Wang
    View author publications

    You can also search for this author inPubMed Google Scholar

  4. Linjiong Zhou
    View author publications

    You can also search for this author inPubMed Google Scholar

  5. Xiaofei Wu
    View author publications

    You can also search for this author inPubMed Google Scholar

  6. Yimin Liu
    View author publications

    You can also search for this author inPubMed Google Scholar

  7. Guoxiong Wu
    View author publications

    You can also search for this author inPubMed Google Scholar

  8. Kangjun Chen
    View author publications

    You can also search for this author inPubMed Google Scholar

  9. Sicheng He
    View author publications

    You can also search for this author inPubMed Google Scholar

  10. Wenting Hu
    View author publications

    You can also search for this author inPubMed Google Scholar

  11. Jiandong Li
    View author publications

    You can also search for this author inPubMed Google Scholar

  12. Jinxiao Li
    View author publications

    You can also search for this author inPubMed Google Scholar

  13. Guokui Nian
    View author publications

    You can also search for this author inPubMed Google Scholar

  14. Lei Wang
    View author publications

    You can also search for this author inPubMed Google Scholar

  15. Jing Yang
    View author publications

    You can also search for this author inPubMed Google Scholar

  16. Minghua Zhang
    View author publications

    You can also search for this author inPubMed Google Scholar

  17. Xiaoqi Zhang
    View author publications

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence to Qing Bao.

Additional information

Article Highlights

• AMIP simulation datasets produced by CAS FGOALS-f3-L covering 1979 to 2014 are described.

• The dataset contains three ensemble members with different initial states by the time lag method.

• The model outputs contain a total of 37 variables and include the three-hourly mean, six-hourly transient, daily and monthly mean datasets.

Data availability statement The data that support the findings of this study are available from https://esgf-node.llnl.gov/projects/cmip6/.

Disclosure statement No potential conflict of interest was reported by the authors.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, B., Bao, Q., Wang, X. et al. CAS FGOALS-f3-L Model Datasets for CMIP6 Historical Atmospheric Model Intercomparison Project Simulation. Adv. Atmos. Sci. 36, 771–778 (2019). https://doi.org/10.1007/s00376-019-9027-8

Download citation

  • Received: 09 February 2019

  • Revised: 30 March 2019

  • Accepted: 19 April 2019

  • Published: 03 July 2019

  • Issue Date: August 2019

  • DOI: https://doi.org/10.1007/s00376-019-9027-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Key words

  • CMIP6
  • AMIP
  • FGOALS-f3-L
  • MJO
  • tropical cyclone
  • extreme precipitation

关键词

  • CMIP6
  • AMIP
  • FGOALS-f3-L
  • MJO
  • 台风
  • 极端降水

Profiles

  1. Linjiong Zhou View author profile
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

62.171.150.19

Not affiliated

Springer Nature

© 2025 Springer Nature