Skip to main content
Log in

Interaction between Arctic sea ice and the Atlantic meridional overturning circulation in a warming climate

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Tentative evidence suggests that the contraction of Arctic sea ice and the slowdown of the Atlantic meridional overturning circulation (AMOC) may have already started in the 1970 or 1980s, which raises the question of how changes in these two key climate components are connected across different timescales. Here, we investigate two-way interactions between Arctic sea ice and AMOC variations using a broad suite of models and climate simulations, including those from the CMIP5 and CMIP6 datasets. Our analysis of preindustrial simulations suggests that Arctic sea ice loss can drive an AMOC slowdown after a multi-decadal delay primarily through the downstream propagation of positive buoyancy (warm/low salinity) anomalies spreading from the Arctic to the subpolar North Atlantic and suppressing deep convection. The AMOC weakening on the other hand acts to expand Arctic sea ice cover within several years via a reduction in northward oceanic heat transport. Analyzing greenhouse-warming simulations, further we show that these interactions should operate under anthropogenic global warming, affecting future projections for Arctic sea ice and the AMOC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from €39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The HadISST.2 sea ice data are publicly available at https://www.metoffice.gov.uk/hadobs/hadisst2/data/. The NASA GISTEMP v4 data are publicly available at https://data.giss.nasa.gov/gistemp/. The CMIP5/6 data are publicly available through the Earth System Grid Federation (ESGF) https://esgf-node.llnl.gov/projects/esgf-llnl/. The CESM-LE data are publicly available on the Earth System Grid (ESG) https://www.earthsystemgrid.org. The CESM1-CN Arctic sea ice perturbation experiment data are available on request from the corresponding author.

References

  • Årthun M, Eldevik T, Smedsrud LH, Skagseth Ø, Ingvaldsen RB (2012) Quantifying the influence of Atlantic heat on Barents Sea ice variability and retreat. J Clim 25:4736–4743

    Google Scholar 

  • Bakker P, Schmittner A, Lenaerts JTM, Abe-Ouchi A, Bi D, van den Broeke MR, Chan WL, Hu A, Beadling RL, Marsland SJ, Mernild SH (2016) Fate of the Atlantic meridional overturning circulation: strong decline under continued warming and Greenland melting. Geophys Res Lett 43:12252–12260

    Google Scholar 

  • Born A, Stocker TF (2014) Two stable equilibria of the Atlantic Subpolar Gyre. J Phys Oceanogr 44:246–264

    Google Scholar 

  • Bretherton CS, Widmann M, Dymnidov VP, Wallace JM, Blade I (1999) The effective number of spatial degrees of freedom of a time-varying field. J Clim 12:1990–2009

    Google Scholar 

  • Day JJ, Hargreaves JC, Annan JD, Abe-Ouchi A (2012) Sources of multi-decadal variability in Arctic sea ice extent. Environ Res Lett 7:034011

    Google Scholar 

  • Delworth TL, Manabe S, Stouffer RJ (1997) Multidecadal climate variability in the Greenland Sea and surrounding regions: a coupled model simulation. Geophys Res Lett 24:257–260

    Google Scholar 

  • Delworth TL, Zeng F, Vecchi GA, Yang X, Zhang L, Zhang R (2016) The North Atlantic Oscillation as a driver of rapid climate change in the Northern Hemisphere. Nat Geosci 9:509–512

    Google Scholar 

  • Deser C, Teng H (2008) Evolution of Arctic sea ice concentration trends and the role of atmospheric circulation forcing, 1979–2007. Geophys Res Lett 35:L02504

    Google Scholar 

  • Ding Q, Schweiger A, L’Heureux M, Battisti DS, Po-Chedley S, Johnson NC, Blanchard-Wrigglesworth E, Harnos K, Zhang Q, Eastman R, Steig EJ (2017) Influence of high-latitude atmospheric circulation changes on summertime Arctic sea ice. Nat Clim Change 7:289–295

    Google Scholar 

  • Drijfhout S, Gleeson E, Dijkstra HA, Livina V (2013) Spontaneous abrupt climate change due to an atmospheric blocking–sea-ice–ocean feedback in an unforced climate model simulation. Proc Natl Acad Sci 110:19713–19718

    Google Scholar 

  • Drinkwater KF, Miles M, Medhaug I, Otterå OH, Kristiansen T, Sundby S, Gao Y (2014) The Atlantic multidecadal oscillation: its manifestations and impacts with special emphasis on the Atlantic region north of 60° N. J Mar Syst 133:117–130

    Google Scholar 

  • Eisenman I, Schneider T, Battisti DS, Bitz CM (2011) Consistent changes in the sea ice seasonal cycle in response to global warming. J Clim 24:5325–5335

    Google Scholar 

  • Eyring V, Bony S, Meehl GA, Senior CA, Stevens B, Stouffer RJ, Taylor KE (2016) Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci Model Dev 9:1937–1958

    Google Scholar 

  • Frajka-Williams E (2015) Estimating the Atlantic overturning at 26° N using satellite altimetry and cable measurements. Geophys Res Lett 42:3458–3464

    Google Scholar 

  • Francis JA, Hunter E (2006) New insight into the disappearing Arctic sea ice cover. Eos Trans AGU 67:509–511

    Google Scholar 

  • Frankcombe LM, von der Heydt A, Dijkstra HA (2010) North Atlantic multidecadal climate variability: an investigation of dominant time scales and processes. J Clim 23:3626–3638

    Google Scholar 

  • Gregory JM, Dixon KW, Stouffer RJ, Weaver AJ, Driesschaert E, Eby M, Fichefet T, Hasumi H, Hu A, Jungclaus JH, Kamenkovich IV (2005) A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration. Geophys Res Lett 32:L12703

    Google Scholar 

  • Halloran PR, Hall IR, Menary M, Reynolds DJ, Scourse JD, Screen JA, Bozzo A, Dunstone N, Phipps S, Schurer AP, Sueyoshi T (2020) Natural drivers of multidecadal Arctic sea ice variability over the last millennium. Sci Rep 10:688

    Google Scholar 

  • Hansen J, Ruedy R, Sato M, Lo K (2010) Global surface temperature change. Rev Geophys 48:RG4004

    Google Scholar 

  • Hassan T, Allen RJ, Liu W, Randles CA (2021) Anthropogenic aerosol forcing of the Atlantic meridional overturning circulation and the associated mechanisms in CMIP6 models. Atmos Chem Phys 21:5821–5846

    Google Scholar 

  • Heuzé C (2017) North Atlantic deep water formation and AMOC in CMIP5 models. Ocean Sci 13:609–622

    Google Scholar 

  • Heuzé C, Årthun M (2019) The Atlantic inflow across the Greenland–Scotland ridge in global climate models (CMIP5). Elem Sci Anthr 7:16

    Google Scholar 

  • Hu S, Fedorov AV (2019) Indian Ocean warming can strengthen the Atlantic meridional overturning circulation. Nat Clim Change 9:747–751

    Google Scholar 

  • Hu S, Fedorov AV (2020) Indian Ocean warming as a driver of the North Atlantic warming hole. Nat Commun 11:1–11

    Google Scholar 

  • Hu A, Meehl GA, Han W, Yin J (2009) Transient response of the MOC and climate to potential melting of the Greenland ice sheet in the 21st century. Geophys Res Lett 36:L10707

    Google Scholar 

  • Jahn A, Holland MM (2013) Implications of Arctic sea ice changes for North Atlantic deep convection and the meridional overturning circulation in CCSM4-CMIP5 simulations. Geophys Res Lett 40:1206–1211

    Google Scholar 

  • Jungclaus JH, Haak H, Latif M, Mikolajewicz U (2005) Arctic–North Atlantic interactions and multidecadal variability of the meridional overturning circulation. J Clim 18:4013–4031

    Google Scholar 

  • Kay JE, Holland MM, Jahn A (2011) Inter-annual to multi-decadal Arctic sea ice extent trends in a warming world. Geophys Res Lett 38:L15708

    Google Scholar 

  • Kay JE, Deser C, Phillips A, Mai A, Hannay C, Strand G, Arblaster JM, Bates SC, Danabasoglu G, Edwards J, Holland M (2015) The Community Earth System Model (CESM) large ensemble project: a community resource for studying climate change in the presence of internal climate variability. Bull Am Meteorol Soc 96:1333–1349

    Google Scholar 

  • Lehner F, Born A, Raible CC, Stocker TF (2013) Amplified inception of European little Ice Age by sea ice-ocean-atmosphere feedbacks. J Clim 26:7586–7602

    Google Scholar 

  • Levermann A, Mignot J, Nawrath S, Rahmstorf S (2007) The role of northern sea ice cover for the weakening of the thermohaline circulation under global warming. J Clim 20:4160–4171

    Google Scholar 

  • Li H, Fedorov AV (2021) Persistent freshening of the Arctic Ocean and changes in the North Atlantic salinity caused by Arctic sea ice decline. Clim Dyn. https://doi.org/10.1007/s00382-021-05850-5

    Article  Google Scholar 

  • Li H, Fedorov AV, Liu W (2021) AMOC stability and diverging response to Arctic sea ice decline in two climate models. J Clim 34:5443–5460

    Google Scholar 

  • Liu W, Fedorov AV (2019) Global impacts of Arctic sea ice loss mediated by the Atlantic meridional overturning circulation. Geophys Res Lett 46:944–952

    Google Scholar 

  • Liu W, Liu Z (2013) A diagnostic indicator of the stability of the Atlantic meridional overturning circulation in CCSM3. J Clim 26:1926–1938

    Google Scholar 

  • Liu W, Liu Z, Brady EC (2014) Why is the AMOC monostable in coupled general circulation models? J Clim 27:2427–2443

    Google Scholar 

  • Liu W, Xie S-P, Liu Z, Zhu J (2017) Overlooked possibility of a collapsed Atlantic meridional overturning circulation in warming climate. Sci Adv 3:e1601666

    Google Scholar 

  • Liu W, Fedorov A, Sévellec F (2019) The mechanisms of the Atlantic meridional overturning circulation slowdown induced by Arctic Sea ice decline. J Clim 32:977–996

    Google Scholar 

  • Liu W, Fedorov AV, Xie S-P, Hu S (2020) Climate impacts of a weakened Atlantic meridional overturning circulation in a warming climate. Sci Adv 6:eaaz4876

    Google Scholar 

  • Ma X, Liu W, Allen RJ, Huang G, Li X (2020) Dependence of regional ocean heat uptake on anthropogenic warming scenarios. Sci Adv 6:eabc0303

    Google Scholar 

  • Ma X, Liu W, Burls NJ, Chen C, Cheng J, Huang G, Li X (2021) Evolving AMOC multidecadal variability under different CO2 forcings. Clim Dyn 57:593–610

    Google Scholar 

  • Mahajan S, Zhang R, Delworth TL (2011) Impact of the Atlantic Meridional Overturning Circulation (AMOC) on Arctic surface air temperature and sea-ice variability. J Clim 24:6573–6581

    Google Scholar 

  • Maslanik J, Drobot S, Fowler C, Emery W, Barry R (2007) On the Arctic climate paradox and the continuing role of atmospheric circulation in affecting sea ice conditions. Geophys Res Lett 34:L03711

    Google Scholar 

  • Menary MB, Robson J, Allan RP, Booth BBB, Cassou C, Gastineau G, Gregory J, Hodsen D, Jones C, Mignot J, Ringer M, Wilcox L, Zhang R (2020) Aerosol-forced AMOC changes in CMIP6 historical simulations. Geophys Res Lett 47:e2020GL088166

    Google Scholar 

  • Mignot J, Ganopolski A, Levermann A (2007) Atlantic subsurface temperatures: response to a shutdown of the overturning circulation and consequences for its recovery. J Clim 20:4884–4898

    Google Scholar 

  • Muir LC, Fedorov AV (2017) Evidence of the AMOC interdecadal mode related to westward propagation of temperature anomalies in CMIP5 models. Clim Dyn 48:1517–1535

    Google Scholar 

  • Nummelin A, Li C, Hezel PJ (2017) Connecting ocean heat transport changes from the mid-latitudes to the Arctic Ocean. Geophys Res Lett 44:1899–1908

    Google Scholar 

  • Oldenburg D, Armour KC, Thompson L, Bitz C (2018) Distinct mechanisms of ocean heat transport into the Arctic under internal variability and climate change. Geophys Res Lett 45:7692–7700

    Google Scholar 

  • Parkinson CL, Cavalieri DJ (2008) Arctic sea ice variability and trends, 1979–2006. J Geophys Res 113:C07003

    Google Scholar 

  • Polyakov IV, Alekseev GV, Bekryaev RV, Bhatt US, Colony R, Johnson MA, Karklin VP, Walsh D, Yulin AV (2003) Long-term ice variability in Arctic marginal seas. J Clim 16:2078–2085

    Google Scholar 

  • Rahmstorf S, Box JE, Feulner G, Mann ME, Robinson A, Rutherford S, Schaffernicht EJ (2015) Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nat Clim Change 5:475–480

    Google Scholar 

  • Roberts CD, Jackson L, McNeall D (2014) Is the 2004–2012 reduction of the Atlantic meridional overturning circulation significant? Geophys Res Lett 41:3204–3210

    Google Scholar 

  • Robock A, Mao J (1992) Winter warming from large volcanic eruptions. Geophys Res Lett 19:2405–2408

    Google Scholar 

  • Sadatzki H, Dokken TM, Berben SMP, Muschitiello F, Stein R, Fahl K, Menviel L, Timmermann A, Jansen E (2019) Sea ice variability in the southern Norwegian Sea during glacial Dansgaard-Oeschger climate cycles. Sci Adv 5:eaau6174

    Google Scholar 

  • Schleussner CF, Feulner G (2013) A volcanically triggered regime shift in the subpolar North Atlantic Ocean as a possible origin of the Little Ice Age. Clim Past 9:1321–1330

    Google Scholar 

  • Schweiger A, Lindsay R, Zhang J, Steele M, Stern H (2011) Uncertainty in modeled arctic sea ice volume. J Geophys Res 116:C00D06

    Google Scholar 

  • Semenov VA, Martin T, Behrens LK, Latif M (2015) Arctic sea ice area in CMIP3 and CMIP5 climate model ensembles–variability and change. Cryosphere Discuss 9:1077–1131

    Google Scholar 

  • Sévellec F, Fedorov AV (2013) The leading, interdecadal Eigenmode of the Atlantic meridional overturning circulation in a realistic ocean model. J Clim 26:2160–2183

    Google Scholar 

  • Sévellec F, Fedorov AV (2015) Optimal excitation of AMOC decadal variability: links to the subpolar ocean. Prog Oceanogr 132:287–304

    Google Scholar 

  • Sévellec F, Fedorov AV, Liu W (2017) Arctic sea-ice decline weakens the Atlantic meridional overturning circulation. Nat Clim Change 7:604–610

    Google Scholar 

  • Shields CA, Bailey DA, Danabasoglu G, Jochum M, Kiehl JT, Levis S, Park S (2012) The low-resolution CCSM4. J Clim 25:3993–4014

    Google Scholar 

  • Shimada K, Kamoshida T, Itoh M, Nishino S, Carmack E, McLaughlin F, Zimmermann S, Proshutinsky A (2006) Pacific Ocean inflow: influence on catastrophic reduction of sea ice cover in the Arctic Ocean. Geophys Res Lett 33:L08605

    Google Scholar 

  • Slawinska J, Robock A (2018) Impact of volcanic eruptions on decadal to centennial fluctuations of Arctic sea ice extent during the Last Millennium and on initiation of the Little Ice Age. J Clim 31:2145–2167

    Google Scholar 

  • Smeed DA, Josey SA, Beaulieu C, Johns WE, Moat BI, Frajka-Williams E, Rayner D, Meinen CS, Baringer MO, Bryden HL, McCarthy GD (2018) The North Atlantic Ocean is in a state of reduced overturning. Geophys Res Lett 45: 1527–1533.

    Google Scholar 

  • Stenchikov G, Delworth TL, Ramaswamy V, Stouffer RJ, Wittenberg A, Zeng F (2009) Volcanic signals in oceans. J Geophys Res 114:D16104

    Google Scholar 

  • Stroeve J, Holland MM, Meier W, Scambos T, Serreze M (2007) Arctic sea ice decline: faster than forecast. Geophys Res Lett 34:L09501

    Google Scholar 

  • Sun L, Alexander M, Deser C (2018) Evolution of the global coupled climate response to Arctic Sea Ice loss during 1990–2090 and its contribution to climate change. J Clim 31:7823–7843

    Google Scholar 

  • Swart NC, Fyfe JC, Hawkins E, Kay JE, Jahn A (2016) Influence of internal variability on Arctic sea-ice trends. Nat Clim Change 5:86–89

    Google Scholar 

  • Swingedouw D, Ortega P, Mignot J, Guilyardi E, Masson-Delmotte V, Butler PG, Khodri M, Séférian R (2015) Bidecadal North Atlantic ocean circulation variability controlled by timing of volcanic eruptions. Nat Commun 6:6545

    Google Scholar 

  • Swingedouw D, Mignot J, Ortega P, Khodri M, Menegoz M, Cassou C, Hanquiez V (2017) Impact of explosive volcanic eruptions on the main climate variability modes. Glob Planet Change 150:24–45

    Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498

    Google Scholar 

  • Thomas MD, Fedorov AV (2019) Mechanisms and impacts of a partial AMOC recovery under enhanced freshwater forcing. Geophys Res Lett 46:3308–3316

    Google Scholar 

  • Thornalley DJR, Oppo DW, Ortega P, Robson JI, Brierley CM, Davis R, Hall IR, Moffa-Sanchez P, Rose NL, Spooner PT, Yashayaev I, Keigwin LD (2018) Anomalously weak Labrador Sea convection and Atlantic overturning during the past 150 years. Nature 556:227–230

    Google Scholar 

  • Titchner HA, Rayner NA (2014) The Met Office Hadley Centre sea ice and sea surface temperature data set, version 2: 1. Sea ice concentrations. J Geophys Res 119:2864–2889

    Google Scholar 

  • Weaver AJ, Eby M, Kienast M, Saenko OA (2007) Response of the Atlantic meridional overturning circulation to increasing atmospheric CO2: sensitivity to mean climate state. Geophys Res Lett 34:L05708

    Google Scholar 

  • Yeager S, Karspeck A, Danabasoglu G (2015) Predicted slowdown in the rate of Atlantic sea ice loss. Geophys Res Lett 42:10704–10713

    Google Scholar 

  • Zhang R (2010) Latitudinal dependence of Atlantic meridional overturning circulation (AMOC) variations. Geophys Res Lett 37:L16703

    Google Scholar 

  • Zhang R (2015) Mechanisms for low-frequency variability of summer Arctic sea ice extent. Proc Natl Acad Sci 112:4570–4575

    Google Scholar 

  • Zhang R, Vallis GK (2006) Impact of great salinity anomalies on the low-frequency variability of the North Atlantic climate. J Clim 19:470–482

    Google Scholar 

  • Zhong Y, Miller GH, Otto-Bliesner BL, Holland MM, Bailey DA, Schneider DP, Geirsdottir A (2011) Centennial-scale climate change from decadally-paced explosive volcanism: a coupled sea ice-ocean mechanism. Clim Dyn 37:2373–2387

    Google Scholar 

Download references

Acknowledgements

W.L. has been supported by the Regents’ Faculty Fellowship, by the Alfred P. Sloan. Foundation as a Research Fellow and by US National Science Foundation (AGS-2053121, OCE 2123422). A.V.F. has been supported by grants from the DOE Office of Science (DE-SC0016538), NSF (OCE-1756682, OPP-1741841) and the ARCHANGE project (ANR-18-MPGA-0001, France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Liu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Fedorov, A. Interaction between Arctic sea ice and the Atlantic meridional overturning circulation in a warming climate. Clim Dyn 58, 1811–1827 (2022). https://doi.org/10.1007/s00382-021-05993-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1007/s00382-021-05993-5