Abstract
Due to the complexity of the physical processes responsible for cloud formation and to the relatively short satellite database of continuous data records, cloud behavior in a warming climate remains uncertain. Identifying physical links between climate modes and clouds would contribute not only to a better understanding of the physical processes governing their formation and dynamics, but also to an improved representation of the clouds in climate models. Here, we identify the global footprint of the Atlantic Multidecadal Oscillation (AMO) on high cloud cover, with focus on the tropical and North Atlantic, tropical Pacific and on the circum-Antarctic sector. In the tropical band, the sea surface temperature (SST) and high cloud cover (HCC) anomalies are positively correlated, indicating a dominant role played by convection in mediating the influence of the AMO-related SST anomalies on the HCC field. The negative SST-HCC correlation observed in North Atlantic could be explained by the reduced meridional temperature gradient induced by the AMO positive phase, which would be reflected in less storms and negative HCC anomalies. A similar negative SST-HCC correlation is observed around Antarctica. The corresponding negative correlation around Antarctica could be generated dynamically, as a response to the intensified upward motion in the Ferrel cell. Despite the inherent imperfection of the observed and reanalysis data sets, the AMO footprint on HCC is found to be robust to the choice of dataset, statistical method, and specific time period considered.





Similar content being viewed by others
References
Adler RF, Huffman GJ, Chang A, Ferraro R, Xie P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P, Nelkin E (2003) The Version 2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-present). J Hydrometeor 4(6):1147–1167. https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2
Balsamo G, Boussetta S, Lopez P, Ferranti L (2010) Evaluation of ERA-Interim and ERA-Interim-GPCP-rescaled precipitation over the U.S.A., ERA ReportSeries No.5, 1–25, Eur. Cent. for Medium-Range Weather Forecasts, Reading, U.K.
Bellomo K, Clement AC, Murphy LN, Polvani LM, Cane MA (2016) New observational evidence for a positive cloud feedback that amplifies the Atlantic Multidecadal Oscillation. Geophys Res Lett 43(18):9852–9859. https://doi.org/10.1002/2016GL069961
Betts AK, Ridgway W (1988) Coupling of the radiative, convective, and surface fluxes over the equatorial Pacific. J Atmos Sci 45(3):522–536. https://doi.org/10.1175/1520-0469(1988)045<0522:COTRCA>2.0.CO;2
Blackmon ML, Wallace JM, Lau NC, Mullen SL (1977) An observational study of the Northern Hemisphere wintertime circulation. J Atmos Sci 34:1040–1053. https://doi.org/10.1175/15200469(1977)034<1040:AOSOTN>2.0.CO;2
Bodenschatz E, Malinowski SP, Shaw RA, Stratmann F (2010) Can we understand clouds without turbulence? Science 327(5968):970–971. https://doi.org/10.1126/science.1185138
Bony S, Dufresne J-L, Le Treut H, Morcrette J-J, Senior C (2004) On dynamic and thermodynamic components of cloud changes. Climate Dynam 22(2-3):71–86. https://doi.org/10.1007/s00382-003-0369-6
Brayshaw DJ, Hoskins B, Blackburn M (2009) The basic ingredients of the North Atlantic storm track. Part I: land–sea contrast and orography. J Atmos Sci 66(9):2539–2558. https://doi.org/10.1175/2009JAS3078.1
Cess R, Potter GL, Blanchet JP, Boer GJ, Del Genio AD, Déqué M, Dymnikov V, Galin V, Gates WL, Ghan SJ, Kiehl JT, Lacis AA, Le Treut H, Li ZX, Liang XZ, McAvaney BJ, Meleshko VP, Mitchell JFB, Morcrette JJ, Randall DA, Rikus L, Roeckner E, Royer JF, Schlese U, Sheinin DA, Slingo A, Sokolov AP, Taylor KE, Washington WM, Wetherald RT, Yagai I, Zhang MH (1990) Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models. J Geophys Res 95(D10):16.601–16.615. https://doi.org/10.1029/JD095iD10p16601
Clement AC, Burgman R, Norris JR (2009) Observational and model evidence for positive low-level cloud feedback. Science 325(5939):460–464. https://doi.org/10.1126/science.1171255
Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Holm EV, Isaksen L, Kallberg P, Kohler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette J-J, Park B-K, Peubey C, de Rosnay P, Tavolato C, Thépaut J-N, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the dataassimilation system. Q J R Meteorol Soc 137(656):553–597. https://doi.org/10.1002/qj.828
Deser C, Alexander MA, Xie SP, Phillips AS (2010) Sea surface temperature variability: patterns and mechanisms. Ann Rev Mar Sci 2(1):115–143. https://doi.org/10.1146/annurev-marine-120408-151453
Devasthale A, Tjernström MCM, Thomas MA, Kahn BH, Fetzer EJ (2012) Influence of the Arctic Oscillation on the vertical distribution of clouds as observed by the A-Train constellation of satellites. Atmos Chem Phys 12(21):10,535–10,544. https://doi.org/10.5194/acp-12-10535-2012
Dima M, Lohmann G (2007) A hemispheric mechanism for the Atlantic Multidecadal Oscillation. J Climate 20(11):2706–2271. https://doi.org/10.1175/JCLI4174.1
Dima M, Lohmann G (2010a) Hysteresis behavior of the Atlantic Ocean circulation identified in observational data. J Climate 24(2):397–403. https://doi.org/10.1175/2010JCLI3467.1
Dima M, Lohmann G (2010b) Evidence for two distinct modes of large-scale ocean circulation changes over the last century. J Climate 23(1):5–16. https://doi.org/10.1175/2009JCLI2867.1
Dima M, Voiculescu M (2016) Global patterns of solar influence on high cloud cover. Climate Dynam 43(18):1432–0894. https://doi.org/10.1002/2016GL069961
Dong BW, Sutton RT (2002) Adjustment of the coupled ocean–atmosphere system to a sudden change in the thermohaline circulation. Geophys Res Lett 29(15):1728–18-4. https://doi.org/10.1029/2002GL015229
Dufresne JL, Bony S (2008) An assessment of the primary sources of spread of global warming estimates from coupled atmosphere–ocean models. J Climate 21(19):5135–5144. https://doi.org/10.1175/2008JCLI2239.1
Enfield DB, Mestas-Nuñez AM, Trimble P (2001) The Atlantic Multidecadal Oscillation and its relation to rainfall and river flows in the continental U.S. Geophys Res Lett 28(10):2077–2080. https://doi.org/10.1029/2000GL012745
Evan AT, Heidinger AK, Vimont DJ (2007) Arguments against a physical long-term trend in global ISCCP cloud amounts. Geophys Res Lett 34(4):L04701. https://doi.org/10.1029/2006GL028083
García-García D, Ummenhofer CC (2015) Multidecadal variability of the continental precipitation annual amplitude driven by AMO and ENSO. Geophys Res Lett 42(2):526–535. https://doi.org/10.1002/2014GL062451
Gastineau G, Li L, Treut HL (2009) The Hadley and Walker circulation changes in global warming conditions described by idealized atmospheric simulations. J Climate 22(14):3993–4013. https://doi.org/10.1175/2009JCLI2794.1
Hahn CJ, Rossow WB, Warren SG (2001) ISCCP cloud properties associated with standard cloud types identified in individual surface observations. J Climate 14(1):11–28. https://doi.org/10.1175/1520-0442(2001)014<0011:ICPAWS>2.0.CO;2
Held IM, Soden JB (2006) Robust responses of the hydrological cycle to global warming. J Climate 19(21):5686–5699. https://doi.org/10.1175/JCLI3990.1
Hong PK, Miyahara H, Yokoyama Y, Takahashi Y, Sato M (2011) Implications for the low latitude cloud formations from solar activity and the quasi-biennial oscillation. J Atmos Sol Terr Phys 73(5-6):587–591. https://doi.org/10.1016/j.jastp.2010.11.026
Huffman GJ, Adler GJ, Bolvin DT, Gu G (2009) Improving the global precipitation record: GPCP Version 2.1. Geophys Res Lett 36(17):L17808. https://doi.org/10.1029/2009GL040000
Isaksen L, Bonavita M, Buizza R, Fisher M, Haseler J, Leutbecher M, Raynaud L (2010) Ensemble of data assimilations at ECMWF. TM 636. http://www.ecmwf.int/publications/
Kaplan A, Cane M, Kushnir Y, Clement A, Blumenthal M, Rajagopalan B (1998) Analyses of global sea surface temperature 1856–1991. J Geophys Res 103(18):567–18589. https://doi.org/10.1029/97JC01736
Kerr RA (2000) A North Atlantic climate pacemaker for the centuries. Science 288(5473):1984–1985. https://doi.org/10.1126/science.288.5473.1984
Klein SA, Hartmann DL (1993) The seasonal cycle of low stratiform clouds. J Climate 6(8):1587–1606. https://doi.org/10.1175/1520-0442(1993)006<1587:TSCOLS>2.0.CO;2
Knight J, Allan RJ, Folland CK, Vellinga M, Mann ME (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32(20):L20708. https://doi.org/10.1029/2005GL024233
Knight J, Folland C, Scaife A (2006) Climate impacts of the Atlantic Multidecadal Oscillation. Geophys Res Lett 33(17):L17706. https://doi.org/10.1029/2006GL026242
Kodama C, Noda AT, Satoh M (2012) An assessment of the cloud signals simulated by NICAM using ISCCP, CALIPSO, and CloudSat satellite simulators. J Geophys Res 117:D12210. https://doi.org/10.1029/2011JD017317
Laken BA, Palle E, Miyahara H (2012) A decade of the moderate resolution imaging spectroradiometer: is a solar-cloud link detectable? J Climate 25(13):4430–4440. https://doi.org/10.1175/JCLI-D-11-00306.1
Latif M, Roeckner E, Botzet M, Esch M, Haak H, Hagemann S, Jungclaus J, Legutke S, Marsland S, Mikolajewicz U, Mitchell J (2004) Reconstructing, monitoring, and predicting multidecadal-scale changes in the North Atlantic thermohaline circulation with sea surface temperature. J Climate 17(7):1605–1614. https://doi.org/10.1175/1520-0442(2004)017<1605:RMAPMC>2.0.CO;2
Li XC, Holland DM, Gerber EP, Yoo C (2014a) Impacts of the north and tropical Atlantic Ocean on the Antarctic Peninsula and sea ice. Nature 505(7484):538–542. https://doi.org/10.1038/nature12945
Li Y, Thompson DWJ, Huang Y, Zhang M (2014b) Observed linkages between the northern annular mode/North Atlantic Oscillation, cloud incidence, and cloud radiative forcing. Geophys Res Lett 41(5):1681–1688. https://doi.org/10.1002/2013GL059113
Lu R, Dong B, Ding H (2006) Impact of the Atlantic Multidecadal Oscillation on the Asian summer monsoon. Geophys Res Lett 33(24):L24701. https://doi.org/10.1029/2006GL027655
Nigam S, Guan B, Ruiz-Barradas A (2011) Key role of the Atlantic Multidecadal Oscillation in 20th century drought and wet periods over the Great Plains. Geophys Res Lett 38(16):L16713. https://doi.org/10.1029/2011GL048650
Norris JR, Evan AT (2015) Empirical removal of artifacts from the isccp and patmos-x satellite cloud records. J Atmos Oceanic Technol 32:691–702. https://doi.org/10.1175/JTECH-D-14-00058.1
Poli P, Hersbach H, Tan D, Dee D, Thépaut J-N, Simmons A, Peubey C, Laloyaux P, Komori T, Berrisford P, Dragani R, Trémolet Y, Holm E, Bonavita M, Isaksen L and Fisher MM (2013) The data assimilation system and initial performance evaluation of the ECMWF pilot reanalysis of the 20th-century assimilating surface observations only (ERA-20C) ERA Report Series no. 14, ECMWF http://www.ecmwf.int/publications/
Rädel G, Mauritsen T, Stevens B, Dommenget D, Matei D, Bellomo K, Clement A (2016) Amplification of El Niño by cloud longwave coupling to atmospheric circulation. Nature Geoscience 9(2):106–110. https://doi.org/10.1038/ngeo2630
Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rodwell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:2–1–2-22. https://doi.org/10.1029/2002JD002670
Rossow WB (1978) Cloud microphysics analysis of the clouds of Earth, Venus, Mars and Jupiter. Icarus 36(1):1–50. https://doi.org/10.1016/0019-1035(78)90072-6
Rossow WB, Walker AW, Beuschel DE, Roiter MD (1996) International Satellite Cloud Climatology Project (ISCCP): documentation of new cloud datasets WMO/TD-737 World Meteorol Org Geneva
Ruprich Y, Msadek R, Castruccio F, Yeager S, Delworth T, Danabasoglu G (2017) Assessing the climate impacts of the observed Atlantic multidecadal variability using the GFDL CM2.1 and NCAR CESM1 global coupled models. J Climate 30:2785–2810
Schlessinger ME, Ramankutty N (1994) An oscillation in the global climate system of period 65–70 years. Nature 367(6465):723–725. https://doi.org/10.1038/367723a0
Simmons AJ, Willett KM, Jones PD, Thorne PW, Dee DP (2010) Low-frequency variations in surface atmospheric humidity, temperature and precipitation: inferences from reanalyses and monthly gridded observational datasets. J Geophys Res 115(D1). https://doi.org/10.1029/2009JD012442
Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements NOAAs Historical Merged land–ocean Temp Analysis (1880–2006). J Climate 21(10):2283–2296. https://doi.org/10.1175/2007JCLI2100.1
Stickler A, Brönnimann SS, Valente MA, Bethke J, Sterin A, Jourdain S, Roucaute E, Vasquez MV, Reyes DA, Allan R, Dee D (2014) ERA-CLIM: historical surface and upper-air data for future reanalyses. Bull Amer Meteor Soc 95(9):1419–1430. https://doi.org/10.1175/BAMS-D-13-00147.1
Stocker T F, Qin D, Plattner G-K, Tignor M, Allen S K, Boschung J, Nauels A, Xia Y, Bex V and Midgley P M (2013) IPCC Climate Change 2013: the physical science basis. Contribution of working group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp https://doi.org/10.1017/CBO9781107415324
Storch HV, Zwiers FW (1999) Statistical Analysis in Climate Research. Cambridge Univ. Press, Cambridge
Sutton RT, Hodson DLR (2005) Atlantic Ocean forcing of North American and European summer climate. Science 309(5731):115–118. https://doi.org/10.1126/science.1109496
Tsushima Y, Ringer MA, Koshiro T, Kawai H, Roehrig R, Cole J, Watanabe M, Yokohata T, Bodas-Salcedo AO, Williams KD, Webb MJ (2015) Robustness, uncertainties, and emergent constraints in the radiative responses of stratocumulus cloud regimes to future warming. Climate Dynam 46(9-10):1432–0894. https://doi.org/10.1007/s00382-015-2750-7
Usoskin I, Voiculescu M, Kovaltsov G, Mursula K (2006) Correlation between clouds at different altitudes and solar activity: fact or artifact? J Atmos Sol Terr Phys 68(18):2164–2172. https://doi.org/10.1016/j.jastp.2006.08.005
Voiculescu M, Usoskin I (2012) Persistent solar signatures in cloud cover: spatial and temporal analysis. Environ Res Lett 7:044004 https://t stacks.iop.org/ERL/7/044004
Warren SG, Hahn CJ, London J (1985) Simultaneous occurrence of different cloud types. J Appl Meteorol 24(7):658–667. https://doi.org/10.1175/1520-0450(1985)024<0658:SOODCT>2.0.CO;2
Webb MJ, Senior CA, Sexton DMH, Ingram WJ, Williams KD, Ringer MA, McAvaney BJ, Colman R, Soden BJ, Gudgel R, Knutson T, Emori S, Ogura T, Tsushima Y, Andronova N, Li B, Musat I, Bony S, Taylor KE (2006) On the contribution of local feedback mechanisms to the range of climate sensitivity in two GCM ensembles. Climate Dynam 27(1):17–38. https://doi.org/10.1007/s00382-006-0111-2
Wetherald R, Manabe S (1988) Cloud feedback processes in a general circulation model. J Atmos Sci 45(8):1397–1416. https://doi.org/10.1175/1520-0469(1988)045<1397:CFPIAG>2.0.CO;2
Willett KM, Alexander LV, Thorne PW (eds) (2010) Global climate (in ‘State of the Climate in 2009’). Bull Am Meteorol Soc 91:S19–S52
Woodruff SD, Worley SJ, Lubker SJ, Ji Z, Freeman JE, Berry DI, Brohan P, Kent EC, Reynolds RW, Smith SR, Wilkinson C (2011) ICOADS Release 2.5 extensions and enhancements to the surface marine meteorological archive. Int J Climatol 31(7):951–967. https://doi.org/10.1002/joc.2103
Xue Y, Smith TM, Reynolds RW (2003) Interdecadal changes of 30-yr SST normals during 1871–2000. J Climate 16(10):1601–1612. https://doi.org/10.1175/1520-0442-16.10.1601
Yin X, Gleason BE, Compo GP, Matsui N, Vose RS (2008) The International Surface Pressure Databank (ISPD) land component version 2.2. National Climatic Data Center, Asheville, pp 1–12
Yuan T, Oreopoulos L (2013) On the global character of overlap between low and highclouds. Geophys Res Lett 40(19):5320–5326. https://doi.org/10.1002/grl.50871
Zelinka MD, Hartmann DL (2011) The observed sensitivity of high clouds to mean surface temperature anomalies in the tropics. J Geophys Res 116(D23). https://doi.org/10.1029/2011JD016459
Zelinka MD, Klein SA, Taylor KE, Andrews T, Webb MJ, Gregory MJ, Forster PM (2013) Contributions of different cloud types to feedbacks and rapid adjustments in CMIP5. J Climate 26(14):5007–5027. https://doi.org/10.1175/JCLI-D-12-00555.1
Zhang R, Delworth TL (2006) Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys Res Lett 33:L17712. https://doi.org/10.1029/2006GL026267
Zhao M (2014) An investigation of the connections among convection, clouds, and climate sensitivity in a global climate model. J Climate 27(5):1845–1857. https://doi.org/10.1175/JCLI-D-13-00145.1
Acknowledgements
This work was supported by project PN-II-ID-PCE-2011-3-0709, SOLACE (IDEI 283) of the Romanian NPRDI-II, UEFISCDI. ISCCP project is acknowledged for the cloud data. GPCP precipitation data, NOAA_ERSST_V3.b SST data, and AMO index were provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at http://www.esrl.noaa.gov/psd/. The HadISST data set was provided by the British Met Office; Hadley Centre Support for the Twentieth Century Reanalysis Project dataset is provided by the U.S. Department of Energy, Office of Science Innovative and Novel Computational Impact on Theory and Experiment program, and Office of Biological and Environmental Research, and by the National Oceanic and Atmospheric Administration Climate Program Office. The European Centre for Medium-Range Weather Forecasts (ECMWF) is acknowledged for ERA 20C and ERA-Interim reanalysis.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Vaideanu, P., Dima, M. & Voiculescu, M. Atlantic Multidecadal Oscillation footprint on global high cloud cover. Theor Appl Climatol 134, 1245–1256 (2018). https://doi.org/10.1007/s00704-017-2330-3
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1007/s00704-017-2330-3


