Skip to main content
Log in

The prehistoric Mt Wilberg rock avalanche, Westland, New Zealand

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

The Mt Wilberg rock avalanche in Westland, New Zealand occurred before 1300 AD and may have occurred as a consequence of an Alpine fault earthquake in ca. 1220 AD or earlier. Its ∼40 × 106 m3 deposit may have briefly obstructed the Wanganui River, but only about 25% of its surface morphology still survives, on terraces isolated from river erosion. The landslide appears to have moved initially as a block, in a direction controlled by a strong rock mass at the base of the source area, before disintegrating and spreading across terraces, fans, and floodplains. Rock avalanche deposits in Westland have relatively short expected lifetimes in the rugged terrain and high rainfall of the area; hence, the hazard from such events is under-represented by their current remnants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from €39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ashford SA, Sitar N, Lysmer J, Deng N (1997) Topographic effects on the seismic response of steep slopes. Bull Seismol Soc Am 87:701–709

    Google Scholar 

  • Berryman K, Alloway B, Almond P, Barrell D, Duncan R, McSaveney M, Read S, Tonkin P (2001) Alpine fault rupture and landscape evolution in Westland, New Zealand. In Proc 5th Int Conf Geomorph Tokyo

  • Buech F (2008) Seismic response of little red hill—towards an understanding of topographic effects on ground motion and rock slope failure. Ph.D. thesis, University of Canterbury, New Zealand, p. 148

  • Calvetti F, Crosta GB, Tatarella M (2000) Numerical prediction of dry granular flows: from the reproduction of small-scale experiments to the prediction of rock avalanches. Riv Ital Geotec 2:21–38

    Google Scholar 

  • Campbell CS (1989) Self-lubrication for long-runout landslides. J Geol 97:653–665

    Article  Google Scholar 

  • Campbell CS, Cleary P, Hopkins MA (1995) Large landslide simulations: global deformation, velocities and basal friction. J Geophys Res 100:8267–8283. doi:10.1029/94JB00937

    Article  Google Scholar 

  • Cox SC, Barrell DJA (compilers) (2007) Geology of the Aoraki Area. Institute of Geological and Nuclear Sciences 1:250,000 geological map 15. 1 sheet +71 p Lower Hutt, New Zealand.

  • Cox SC, Allen SK, Ferris BG (2008) Vampire rock avalanches, Aoraki/Mount Cook National Park, New Zealand. Science Report 2008/10, GNS Science, Lower Hutt, New Zealand, p. 34

  • Davies TRH (1982) Spreading of rock avalanche debris by mechanical fluidisation. Rock Mech 15:9–24. doi:10.1007/BF01239474

    Article  Google Scholar 

  • Davies TRH, McSaveney MJ (2002) Dynamic simulation of the motion of fragmenting rock avalanches. Can Geotech J 39:789–798. doi:10.1139/t02-035

    Article  Google Scholar 

  • Davies TRH, Korup O (2007) Persistent alluvial fanhead trenching resulting from large, infrequent sediment inputs. Earth Surf Processes Landf 32:725–742. doi:10.1002/esp.1410

    Article  Google Scholar 

  • Davies TRH, McSaveney MJ, Beetham RD (2006) Rapid block glides—slide-surface fragmentation in New Zealand’s Waikaremoana landslide. Q J Eng Geol Hydrogeol 39:115–129. doi:10.1144/1470-9236/05-041

    Article  Google Scholar 

  • Delvaux D, Abdrakhmatov KE, Lemzin I, Strom AL (2001) Landslides and surface breaks of the 1911, Ms 8.2 Kemin earthquake, Kyrgystan. Russ Geol Geophys 42:1167–1177

    Google Scholar 

  • De Mets C, Gordon RG, Argus D, Stein S (1994) Effect of recent revisions to the geomagnetic time scale on estimates of current plate motions. Geophys Res Lett 21:2191–2194. doi:10.1029/94GL02118

    Article  Google Scholar 

  • Dunning SA (2004) Rock avalanches in high mountains. Ph.D. thesis, Luton University, UK.

  • Dunning SA, Rosser NJ, Petley DN, Massey CI (2006) The formation and failure of the Tsatichhu landslide dam, Bhutan Himalaya. Landslides 3:107–113. doi:10.1007/s10346-005-0032-x

    Article  Google Scholar 

  • Dunning SA, Mitchell WA, Rosser NJ, Petley DN (2007) The Hattian Bala rock avalanche and associated landslides triggered by the Kashmir Earthquake of 8 October 2005. Eng Geol 93:130–144. doi:10.1016/j.enggeo.2007.07.003

    Article  Google Scholar 

  • Geli L, Bard P-Y, Julien B (1988) The effect of topography on earthquake ground motion: a review and new results. Bull Seismol Soc Am 78:42–63

    Google Scholar 

  • Hancox GT, McSaveney MJ, Manville VR, Davies TRH (2005) The October 1999 Mt Adams rock avalanche and subsequent landslide dam-break flood and effects in Poerua River, Westland, New Zealand. NZ J Geol Geophys 48:683–705

    Google Scholar 

  • Havenith H-B, Strom A, Jongmans D, Abdrachmatov K, Delvaux D, Trefois P (2003) Seismic triggering of earthquakes, part A: field evidence from the northern Tien Shan. Nat Hazards Earth Syst Sci 3:135–149

    Article  Google Scholar 

  • Henderson RD, Thompson SM (1999) Extreme rainfalls in the Southern Alps of New Zealand. J Hydrol NZ 38:309–330

    Google Scholar 

  • Hovius N, Stark CP, Allen PA (1997) Sediment flux from a mountain belt derived by landslide mapping. Geol 25:231–234. doi:10.1130/0091-7613(1997)025<0231:SFFAMB>2.3.CO;2

    Article  Google Scholar 

  • Iverson RM, Denlinger RP (2001) Flow of variably fluidised granular masses across 3-D terrain: 1. Coulomb mixture theory. J Geophys Res 106:537–552. doi:10.1029/2000JB900329

    Article  Google Scholar 

  • Jibson RW, Harp EL, Schulz W, Keefer DK (2006) Large rock avalanches triggered by the M 7.9 Denali Fault, Alaska, earthquake of 3 November 2002. Eng Geol 83:144–160. doi:10.1016/j.enggeo.2005.06.029

    Article  Google Scholar 

  • Keefer DK (1984) Landslides caused by earthquakes. GSA Bull 95:406–421. doi:10.1130/0016-7606(1984)95<406:LCBE>2.0.CO;2

    Article  Google Scholar 

  • Keefer DK (1994) The importance of earthquake-induced landslides to long-term slope erosion and slope-failure hazards in seismically active regions. Geomorphology 10:265–284. doi:10.1016/0169-555X(94)90021-3

    Article  Google Scholar 

  • Korup O (2004) Geomorphic implications of fault zone weakening: slope instability along the Alpine fault, South Westland to Fiordland. NZ J Geol Geophys 47:257–267

    Google Scholar 

  • Korup O (2005) Geomorphic imprint of landslides on alpine river systems, southwest New Zealand. Earth Surf Process Landf 30:783–300. doi:10.1002/esp.1171

    Article  Google Scholar 

  • Larsen SH, Davies TRH, McSaveney MJ (2005) A possible coseismic landslide origin of late Holocene moraines of the Southern Alps, New Zealand. NZ J Geol Geophys 48:311–314

    Google Scholar 

  • McDougall S, Hungr O (2004) A model for the analysis of rapid landslide motion across three-dimensional terrain. Can Geotech J 41:1084–1097. doi:10.1139/t04-052

    Article  Google Scholar 

  • McSaveney MJ (1978) Sherman Glacier rock avalanche, Alaska, U.S.A. In: Rockslides and Avalanches, 1. Voight B (ed) Developments in geotechnical engineering, 14A: 197–258

  • McSaveney MJ (2002) Recent rockfalls and rock avalanches in Mount Cook National Park, New Zealand. Ch 2 in Evans SG, DeGraff JV (eds). Catastrophic landslides: occurrence, mechanisms and mobility. GSA Rev Eng Geol 15:35–70.

  • Mitchell WA, McSaveney MJ, Zondervan A, Kim K, Dunning SA, Taylor PJ (2007) The Keylong Serai rock avalanche, NW Indian Himalaya: geomorphology and paleoseismic implications. Landslides 4:245–254. doi:10.1007/s10346-007-0085-0

    Article  Google Scholar 

  • Norris RJ, Cooper AF (2001) Late Quaternary slip rates and slip partitioning on the Alpine Fault, New Zealand. J Struct Geol 23:507–520. doi:10.1016/S0191-8141(00)00122-X

    Article  Google Scholar 

  • Rhoades DA, Van Dissen RJ (2003) Estimates of the time-varying hazard of rupture of the Alpine Fault, New Zealand, allowing for uncertainties. NZ J Geol Geophys 46:479–488

    Google Scholar 

  • Smith GM, Davies TRH, McSaveney MJ, Bell DH (2006) The Acheron rock avalanche, Canterbury, New Zealand—morphology and dynamics. Landslides 3:62–72. doi:10.1007/s10346-005-0012-1

    Article  Google Scholar 

  • Sosio R, Crosta GB, Hungr O (2008) Complete dynamic modelling calibration for the Thurwieser rock avalanche (Italian Central Alps). Eng Geol 100:11–26. doi:10.1016/j.enggeo.2008.02.012

    Article  Google Scholar 

  • Staron L (2008) Mobility of long-runout rock flows: a discrete numerical investigation. Geophys J Int 172:455–463. doi:10.1111/j.1365-246X.2007.03631.x

    Article  Google Scholar 

  • Straub S (1997) Predictability of long runout landslide motion: implications from granular flow mechanics. Geol Rundsch 86:415–425. doi:10.1007/s005310050150

    Article  Google Scholar 

  • Sutherland R, Berryman K, Norris R (2006) Quaternary slip rate and geomorphology of the Alpine fault: Implications for kinematics and seismic hazard in southwest New Zealand. Bull Geol Soc Am 118:464–474. doi:10.1130/B25627.1

    Article  Google Scholar 

  • Tovar DS, Shulmeister J, Davies TR (2009) A landslide origin of the New Zealand’s Waiho Loop Moraine. Nature Geosci. doi:10.1038/ngeo249

  • Wardle P (1980) Primary succession in Westland National Park and its vicinity, New Zealand. N Z J Bot 18:221–232

    Google Scholar 

  • Wells A, Yetton MD, Duncan RP, Stewart GH (1999) Prehistoric dates of the most recent Alpine Fault earthquakes, New Zealand. Geology 27:995–998. doi:10.1130/0091-7613(1999)027<0995:PDOTMR>2.3.CO;2

    Article  Google Scholar 

  • Whitehouse I, Griffiths GA (1983) Frequency and hazard of large rock avalanches in the central Southern Alps, New Zealand. Geology 11:331–334. doi:10.1130/0091-7613(1983)11<331:FAHOLR>2.0.CO;2

    Article  Google Scholar 

  • Wright CA (1998) The AD 930 long-runout round top debris avalanche, Westland, New Zealand. NZ J Geol Geophys 41:493–497

    Google Scholar 

  • Yetton MD (1998) The probability and consequences of the next Alpine Fault earthquake, South Island, New Zealand. Ph.D. thesis, University of Canterbury, New Zealand.

Download references

Acknowledgments

We thank John Sullivan, landowner, for the access and advice and for the Matai sample and digger; Mason Trust, University of Canterbury for funding for GGC; Andrew Wells of Hawea for dendrochronological expertise and assistance; and Sandy Hammond of Lincoln University for laboratory facilities and assistance. This research was supported by the New Zealand Foundation for Research, Science and Technology, through the Public Good Science Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Davies.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chevalier, G., Davies, T. & McSaveney, M. The prehistoric Mt Wilberg rock avalanche, Westland, New Zealand. Landslides 6, 253–262 (2009). https://doi.org/10.1007/s10346-009-0156-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s10346-009-0156-5

Keywords