Abstract
A super heavy element Uub (Z = 112) has been studied theoretically in conjunction with relativistic effects and the effects of electron correlations. The atomic structure and the oscillator strengths of low-lying levels have been calculated, and the ground states have also been determined for the singly and doubly charged ions. The influence of relativity and correlation effects to the atomic properties of such a super heavy element has been investigated in detail. The results have been compared with the properties of an element Hg. Two energy levels at wave numbers 64470 and 94392 are suggested to be of good candidates for experimental observations.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Liu J. Progress and prospect of the synthesiaed studies of superheavy element (nuclied). Prog Phys, 2002, 22(3): 272–282
Nilsson S G, Sobiczwski C F T, Szymański Z, et al. On the nuclear structure and stability of heavy and superheavy elements. Nucl Phys A, 1969, 131(1): 1–66
Gan Z G, Fan H M, Qing Z. First observation for isotope 265Bh (Z = 107). High Energy Phys Nucl Phys, 2004, 28(4): 332–334
Tai F, Chen D H, Xu C, et al. Description of new element Z = 113 and its α-decay. High Energy Phys Nucl Phys, 2005, 29(5): 439–441
Ren Z Z, Chen D H, Tai F, et al. Ground state properties of odd-Z superheavy nuclei. Phys Rev C, 2003, 67(6): 064302
Nash C S. Atomic and molecular properties of elements 112, 114, and 118. J Phys Chem, 2005, 109: 3493–3500
Schwerdtfeger P, Seth M. Relativistic quantum chemistry of the superheavy elements. Close-shell element 114 as a case study. J Nucl Rodiochem Sci, 2002, 3(1): 133–136
Düllmann Ch E, Brüchle W, Dressler R, et al. Chemical investigation of hassium (element 108). Nature, 2002, 418: 859–862
Sewtz M, Backe H, Dretzke A, et al. First observation of atomic levels for the element Fermium (Z = 100). Phys Rev Lett, 2003, 90(16): 163002
Rose S J, Grant I P, Pyper N C. The direct and indirect effects in the relaivistic modification of atomic valence orbitals. J Phys B, 1978, 11(7): 1171–1176
Pyykkö P. Relativistic effects in structure chemistry. Chem Rev, 1988, 88: 562–594
Fritzsche S. On the accuracy of valence-shell computations for heavy and super-heavy elements. Eur Phys J D, 2005, 33: 15–21
Yong-Ki K. Strengths and weaknesses of relativistic atomic structure calculations. Physica Scripta, 1997, T73: 19–24
Hofmann S, Ninov V, Hesßberger F P, et al. The new element 112. Z Phys A, 1996, 354(3): 229–230
Desclaux J P. Relativistic Dirac-Fork expectation values for atoms with Z = 1 to Z = 120. Atomic Data Nuclera Data Tables, 1973, 12(4): 311–406
Yakushev A B, Zvara I, Oganessian Y T, et al. Chemical identification and properties of element 112. Radiochim Acta, 2003, 91: 433–439
Pershina V, Bastug T. Relativistic effects on experimentally studied gas-phase properties of the heaviest elements. Chem Phys, 2005, 311: 139–150
Sewtz M, Backe H, Dong C Z, et al. Resonance ionization spectroscopy of fermium (Z = 100). Spec Acta Part B, 2003, 58: 1077–1082
Weiss P. Taking a shine to number 100. Sci News, 2003, 163: 349
Eliav E, Kaldor U, Ishikawa Y. Transition energies of mercury and ekamercury (element 112) by the relativistic coupled-cluster method. Phys Rev A, 1995, 52(4): 2765–2769
Pershina V, Bastug T, Jacob T, et al. Intermetallic compounds of the heaviest elements: the electronic structure and bonding of dimers of element 112 and its homolog Hg. Chem Phys Lett, 2002, 365: 176–183
Sarpe-Tudoran C. Adsorption of element 112 on a Au surface. Dissertation for the Doctoral Degree. Kassel: Kassel University, 2004
Ding X B, Dong C Z. Theoretical predictions on the low-lying excitation structure of super heavy element bohrium (Z = 107). Acta Phys Sin, 2004, 53(10): 3326–3329
Johnson E, Fricke B, Jacob T, et al. Ionization potentials and radii of neutral and ionized species of elements 107 (bohrium) and 108 (hassium) from extended multiconfiguration Dirac-Fock calculations. J Chem Phys, 2002, 116(5): 1862–1868
Li J G, Dong C Z, Ding X B. Resonance energies, absorption oscillator strengths and ionization potentials of element hassium (Z = 108). Chin Phys Lett, 2007, 24(1): 83–85
Grant I P. Relativistic calculation of atomic structure. Advan Phys, 1970, 19: 747–811
Fricke B. Relativistic calculation of atomic structure. Physica Scripta, 1984, T8: 129–133
Parpia F A, Fischer C F, Grant I P. GRASP92: A package for large-scale relativistic atomic structure calculations. Comp Phys Commun, 1996, 94: 249–271
Fritzsche S, Fischer C F, Gaigalas G. RELCI: A program for relativistic cofiguration interaction calcurations. Comp Phys Commun, 2002, 148: 103–123
Cowan R D. The Theory of Atomic Structure and Apectra. Berkeley: University of California, 1981. 404
Fritzsche S, Fischer C F, Dong C Z. REOS99: A revised program for transition probability calculations including relativistic, correlation, and relaxation effects. Comp Phys Commun, 2000, 124: 340–352
Keller O L, Nestor C W, Carison T A, et al. Predicted properties of the superheavy element. II. element111, eka-gold. J Phys Chem, 1973, 77(14): 1806–1809
Pyykkö P, Tokman M, Labzowsky L N. Estimated valence-level Lamb shifts for group 1 and group 11 metal atoms. Phys Rev A, 1998, 57(2): R689–R692
Johnson E, Fricke B, Keller O L, et al. Ionization potentials and radii of atoms and ions of elements 104 (unnilquadium) and of hafnium (+2) derived from multiconfiguration Dirac-Fock calculations. J Chem Phys, 1990, 93(11): 8041–8050
Yu Y J, Li J G, Dong C Z, et al. Excited energies, resonance absorption oscillator strengths and ionization potentials of netural and ionized species of element Uub (Z = 112). Eur Phys J D, 2007, 44: 51–56
Author information
Authors and Affiliations
Corresponding author
Additional information
Supported by the National Natural Science Foundation of China (Grant Nos. 10376026 and 10434100), the Foundation of Theoretical Nuclear Physics of National Laboratory of Heavy Ion Accelerator of Lanzhou, and the China/Ireland Science and Technology Collaboration Research Fund (No. CI-2004-07)
Rights and permissions
About this article
Cite this article
Li, J., Dong, C., Yu, Y. et al. The atomic structure and the properties of ununbium (Z = 112) and Mercury (Z = 80). Sci. China Ser. G-Phys. Mech. Astron. 50, 707–715 (2007). https://doi.org/10.1007/s11433-007-0073-3
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/s11433-007-0073-3