Skip to main content
Log in

The atomic structure and the properties of ununbium (Z = 112) and Mercury (Z = 80)

  • Published:
Science in China Series G: Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

A super heavy element Uub (Z = 112) has been studied theoretically in conjunction with relativistic effects and the effects of electron correlations. The atomic structure and the oscillator strengths of low-lying levels have been calculated, and the ground states have also been determined for the singly and doubly charged ions. The influence of relativity and correlation effects to the atomic properties of such a super heavy element has been investigated in detail. The results have been compared with the properties of an element Hg. Two energy levels at wave numbers 64470 and 94392 are suggested to be of good candidates for experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Liu J. Progress and prospect of the synthesiaed studies of superheavy element (nuclied). Prog Phys, 2002, 22(3): 272–282

    Google Scholar 

  2. Nilsson S G, Sobiczwski C F T, Szymański Z, et al. On the nuclear structure and stability of heavy and superheavy elements. Nucl Phys A, 1969, 131(1): 1–66

    Article  ADS  Google Scholar 

  3. Gan Z G, Fan H M, Qing Z. First observation for isotope 265Bh (Z = 107). High Energy Phys Nucl Phys, 2004, 28(4): 332–334

    Google Scholar 

  4. Tai F, Chen D H, Xu C, et al. Description of new element Z = 113 and its α-decay. High Energy Phys Nucl Phys, 2005, 29(5): 439–441

    Google Scholar 

  5. Ren Z Z, Chen D H, Tai F, et al. Ground state properties of odd-Z superheavy nuclei. Phys Rev C, 2003, 67(6): 064302

    Google Scholar 

  6. Nash C S. Atomic and molecular properties of elements 112, 114, and 118. J Phys Chem, 2005, 109: 3493–3500

    Google Scholar 

  7. Schwerdtfeger P, Seth M. Relativistic quantum chemistry of the superheavy elements. Close-shell element 114 as a case study. J Nucl Rodiochem Sci, 2002, 3(1): 133–136

    Google Scholar 

  8. Düllmann Ch E, Brüchle W, Dressler R, et al. Chemical investigation of hassium (element 108). Nature, 2002, 418: 859–862

    Article  ADS  Google Scholar 

  9. Sewtz M, Backe H, Dretzke A, et al. First observation of atomic levels for the element Fermium (Z = 100). Phys Rev Lett, 2003, 90(16): 163002

    Google Scholar 

  10. Rose S J, Grant I P, Pyper N C. The direct and indirect effects in the relaivistic modification of atomic valence orbitals. J Phys B, 1978, 11(7): 1171–1176

    Article  ADS  Google Scholar 

  11. Pyykkö P. Relativistic effects in structure chemistry. Chem Rev, 1988, 88: 562–594

    Article  Google Scholar 

  12. Fritzsche S. On the accuracy of valence-shell computations for heavy and super-heavy elements. Eur Phys J D, 2005, 33: 15–21

    Article  ADS  Google Scholar 

  13. Yong-Ki K. Strengths and weaknesses of relativistic atomic structure calculations. Physica Scripta, 1997, T73: 19–24

    Article  Google Scholar 

  14. Hofmann S, Ninov V, Hesßberger F P, et al. The new element 112. Z Phys A, 1996, 354(3): 229–230

    Article  Google Scholar 

  15. Desclaux J P. Relativistic Dirac-Fork expectation values for atoms with Z = 1 to Z = 120. Atomic Data Nuclera Data Tables, 1973, 12(4): 311–406

    Article  ADS  Google Scholar 

  16. Yakushev A B, Zvara I, Oganessian Y T, et al. Chemical identification and properties of element 112. Radiochim Acta, 2003, 91: 433–439

    Article  Google Scholar 

  17. Pershina V, Bastug T. Relativistic effects on experimentally studied gas-phase properties of the heaviest elements. Chem Phys, 2005, 311: 139–150

    Article  ADS  Google Scholar 

  18. Sewtz M, Backe H, Dong C Z, et al. Resonance ionization spectroscopy of fermium (Z = 100). Spec Acta Part B, 2003, 58: 1077–1082

    Article  Google Scholar 

  19. Weiss P. Taking a shine to number 100. Sci News, 2003, 163: 349

    Google Scholar 

  20. Eliav E, Kaldor U, Ishikawa Y. Transition energies of mercury and ekamercury (element 112) by the relativistic coupled-cluster method. Phys Rev A, 1995, 52(4): 2765–2769

    Article  ADS  Google Scholar 

  21. Pershina V, Bastug T, Jacob T, et al. Intermetallic compounds of the heaviest elements: the electronic structure and bonding of dimers of element 112 and its homolog Hg. Chem Phys Lett, 2002, 365: 176–183

    Google Scholar 

  22. Sarpe-Tudoran C. Adsorption of element 112 on a Au surface. Dissertation for the Doctoral Degree. Kassel: Kassel University, 2004

    Google Scholar 

  23. Ding X B, Dong C Z. Theoretical predictions on the low-lying excitation structure of super heavy element bohrium (Z = 107). Acta Phys Sin, 2004, 53(10): 3326–3329

    Google Scholar 

  24. Johnson E, Fricke B, Jacob T, et al. Ionization potentials and radii of neutral and ionized species of elements 107 (bohrium) and 108 (hassium) from extended multiconfiguration Dirac-Fock calculations. J Chem Phys, 2002, 116(5): 1862–1868

    Article  ADS  Google Scholar 

  25. Li J G, Dong C Z, Ding X B. Resonance energies, absorption oscillator strengths and ionization potentials of element hassium (Z = 108). Chin Phys Lett, 2007, 24(1): 83–85

    Article  ADS  Google Scholar 

  26. Grant I P. Relativistic calculation of atomic structure. Advan Phys, 1970, 19: 747–811

    Article  ADS  Google Scholar 

  27. Fricke B. Relativistic calculation of atomic structure. Physica Scripta, 1984, T8: 129–133

    Article  ADS  Google Scholar 

  28. Parpia F A, Fischer C F, Grant I P. GRASP92: A package for large-scale relativistic atomic structure calculations. Comp Phys Commun, 1996, 94: 249–271

    Article  ADS  Google Scholar 

  29. Fritzsche S, Fischer C F, Gaigalas G. RELCI: A program for relativistic cofiguration interaction calcurations. Comp Phys Commun, 2002, 148: 103–123

    Article  ADS  Google Scholar 

  30. Cowan R D. The Theory of Atomic Structure and Apectra. Berkeley: University of California, 1981. 404

    Google Scholar 

  31. Fritzsche S, Fischer C F, Dong C Z. REOS99: A revised program for transition probability calculations including relativistic, correlation, and relaxation effects. Comp Phys Commun, 2000, 124: 340–352

    Article  MATH  ADS  Google Scholar 

  32. Keller O L, Nestor C W, Carison T A, et al. Predicted properties of the superheavy element. II. element111, eka-gold. J Phys Chem, 1973, 77(14): 1806–1809

    Article  Google Scholar 

  33. Pyykkö P, Tokman M, Labzowsky L N. Estimated valence-level Lamb shifts for group 1 and group 11 metal atoms. Phys Rev A, 1998, 57(2): R689–R692

    Article  ADS  Google Scholar 

  34. Johnson E, Fricke B, Keller O L, et al. Ionization potentials and radii of atoms and ions of elements 104 (unnilquadium) and of hafnium (+2) derived from multiconfiguration Dirac-Fock calculations. J Chem Phys, 1990, 93(11): 8041–8050

    Article  ADS  Google Scholar 

  35. Yu Y J, Li J G, Dong C Z, et al. Excited energies, resonance absorption oscillator strengths and ionization potentials of netural and ionized species of element Uub (Z = 112). Eur Phys J D, 2007, 44: 51–56

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong ChenZhong.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 10376026 and 10434100), the Foundation of Theoretical Nuclear Physics of National Laboratory of Heavy Ion Accelerator of Lanzhou, and the China/Ireland Science and Technology Collaboration Research Fund (No. CI-2004-07)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Dong, C., Yu, Y. et al. The atomic structure and the properties of ununbium (Z = 112) and Mercury (Z = 80). Sci. China Ser. G-Phys. Mech. Astron. 50, 707–715 (2007). https://doi.org/10.1007/s11433-007-0073-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-007-0073-3

Keywords