(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 11.1' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 69505, 2339]
NotebookOptionsPosition[ 60658, 2105]
NotebookOutlinePosition[ 61039, 2122]
CellTagsIndexPosition[ 60996, 2119]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["Log-Normal Distribution", "Title",ExpressionUUID->"39cd4b35-a55f-4709-bc06-2803e625c554"],
Cell[CellGroupData[{
Cell["Author", "Subsection",ExpressionUUID->"476dc8de-b39e-481a-9ae6-c7e82b1f70e3"],
Cell["\", "Text",ExpressionUUID->"3fef5869-824d-4ee0-983c-3320c93efb3a"],
Cell[TextData[{
"This notebook downloaded from ",
ButtonBox["http://mathworld.wolfram.com/notebooks/Statistics/\
LogNormalDistribution.nb",
BaseStyle->"Hyperlink",
ButtonData:>{
URL["http://mathworld.wolfram.com/notebooks/Statistics/\
LogNormalDistribution.nb"], None}],
"."
}], "Text",ExpressionUUID->"0391f0e6-e6fc-4813-98f5-e5c3dd63044d"],
Cell[TextData[{
"For more information, see Eric's ",
StyleBox["MathWorld",
FontSlant->"Italic"],
" entry ",
ButtonBox["http://mathworld.wolfram.com/LogNormalDistribution.html",
BaseStyle->"Hyperlink",
ButtonData:>{
URL["http://mathworld.wolfram.com/LogNormalDistribution.html"], None}],
"."
}], "Text",ExpressionUUID->"7a691740-82cf-4853-ab51-eb596309e6eb"],
Cell["\", "Text",ExpressionUUID->"3478df57-8d99-4c52-9a52-d96423a2f325"]
}, Open ]],
Cell[CellGroupData[{
Cell["Plots", "Section",ExpressionUUID->"1586a345-0bd2-4902-a70e-c172014c6101"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Show", "[",
RowBox[{
RowBox[{"GraphicsArray", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"#", "[",
RowBox[{
RowBox[{"LogNormalDistribution", "[",
RowBox[{"1", ",", "1"}], "]"}], ",", "x"}], "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",", ".01", ",", "20"}], "}"}], ",",
"\[IndentingNewLine]",
RowBox[{"PlotStyle", "\[Rule]", "Red"}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"TraditionalForm", "/@",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"#", "[", "x", "]"}]}], "}"}]}]}], ",",
"\[IndentingNewLine]",
RowBox[{"Ticks", "\[Rule]", "None"}], ",",
RowBox[{"DisplayFunction", "\[Rule]", "Identity"}]}], "]"}], "&"}], "/@",
RowBox[{"{",
RowBox[{"PDF", ",", "CDF"}], "}"}]}], "]"}], ",",
RowBox[{"ImageSize", "\[Rule]", "500"}]}], "\[IndentingNewLine]",
"]"}]], "Input",ExpressionUUID->"f7ef3eed-becb-49b5-a221-8cde03e52026"],
Cell[GraphicsData["PostScript", "\"], "Graphics",
ImageSize->{500, 147.125},ImageCache->GraphicsData["CompressedBitmap", "\"],ImageRangeCache->{{{0., 499.}, {146.125, 0.}} -> {0., 0., 0., 0.}, \
{{13.0625, 238.188}, {142.625, 3.4375}} -> {-3., 0., 0., 0.}, {{260.75, \
485.875}, {142.625, 3.4375}} -> {-30., 0., 0., \
0.}},ExpressionUUID->"9f4c6d55-c8a5-4a16-ab20-d34ef607eca0"],
Cell[BoxData[
TagBox[
RowBox[{"\[SkeletonIndicator]", "GraphicsArray", "\[SkeletonIndicator]"}],
False,
Editable->False]], "Output",ExpressionUUID->"7a9cd686-163c-4e86-a3d8-\
6a8c4b37379b"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Stats", "Section",ExpressionUUID->"edea9a89-6bac-4ef3-9f52-fb0b34c25c24"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{
RowBox[{"Stats", "[",
RowBox[{
RowBox[{"LogNormalDistribution", "[",
RowBox[{"M", ",", "S"}], "]"}], ",", "x"}], "]"}], "//",
"FullSimplify"}], "//", "StatsForm"}], "//", "TraditionalForm"}]], "Input",\
ExpressionUUID->"52a1fe5f-46b6-4c70-b6ac-21de9f297f09"],
Cell[BoxData[
FormBox[
TagBox[
FormBox[
TagBox[GridBox[{
{"Domain",
TagBox[
RowBox[{"Interval", "[",
RowBox[{"{",
RowBox[{"0", ",", "\[Infinity]"}], "}"}], "]"}],
HoldForm]},
{
RowBox[{"P", "(", "x", ")"}],
FractionBox[
SuperscriptBox[
TagBox["e",
Function[{}, E]],
RowBox[{"-",
FractionBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{"M", "-",
TagBox[
RowBox[{"ln",
TagBox["x",
Log,
Editable->True]}],
InterpretTemplate[
Function[BoxForm`e$,
Log[BoxForm`e$]]]]}], ")"}], "2"],
RowBox[{"2", " ",
SuperscriptBox["S", "2"]}]]}]],
RowBox[{
SqrtBox[
RowBox[{"2", " ", "\[Pi]"}]], " ", "S", " ", "x"}]]},
{
RowBox[{"D", "(", "x", ")"}],
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"erf", "(",
FractionBox[
RowBox[{
TagBox[
RowBox[{"ln",
TagBox["x",
Log,
Editable->True]}],
InterpretTemplate[
Function[BoxForm`e$,
Log[BoxForm`e$]]]], "-", "M"}],
RowBox[{
SqrtBox["2"], " ", "S"}]], ")"}], "+", "1"}], ")"}]}]},
{"\[Mu]",
SuperscriptBox[
TagBox["e",
Function[{}, E]],
RowBox[{
FractionBox[
SuperscriptBox["S", "2"], "2"], "+", "M"}]]},
{
SuperscriptBox["\[Sigma]", "2"],
RowBox[{
SuperscriptBox[
TagBox["e",
Function[{}, E]],
RowBox[{
SuperscriptBox["S", "2"], "+",
RowBox[{"2", " ", "M"}]}]], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SuperscriptBox[
TagBox["e",
Function[{}, E]],
SuperscriptBox["S", "2"]]}], ")"}]}]},
{
SubscriptBox["\[Gamma]", "1"],
RowBox[{
SqrtBox[
RowBox[{
RowBox[{"-", "1"}], "+",
SuperscriptBox[
TagBox["e",
Function[{}, E]],
SuperscriptBox["S", "2"]]}]], " ",
RowBox[{"(",
RowBox[{"2", "+",
SuperscriptBox[
TagBox["e",
Function[{}, E]],
SuperscriptBox["S", "2"]]}], ")"}]}]},
{
SubscriptBox["\[Gamma]", "2"],
RowBox[{
RowBox[{
SuperscriptBox[
TagBox["e",
Function[{}, E]],
RowBox[{"2", " ",
SuperscriptBox["S", "2"]}]], " ",
RowBox[{"(",
RowBox[{
RowBox[{
SuperscriptBox[
TagBox["e",
Function[{}, E]],
SuperscriptBox["S", "2"]], " ",
RowBox[{"(",
RowBox[{"2", "+",
SuperscriptBox[
TagBox["e",
Function[{}, E]],
SuperscriptBox["S", "2"]]}], ")"}]}], "+", "3"}], ")"}]}],
"-", "6"}]}
},
GridBoxAlignment->{
"Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
"RowsIndexed" -> {}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[2.0999999999999996`]},
Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}, "RowsIndexed" -> {}}],
Function[BoxForm`e$,
TableForm[BoxForm`e$]]],
TraditionalForm],
TraditionalForm,
Editable->True], TraditionalForm]], "Output",ExpressionUUID->"98ae86e1-\
5924-49ea-aee9-e130b9e9bec3"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Raw Moments", "Section",ExpressionUUID->"28c65ce8-4c18-4fad-b3f1-bd66c0823ccb"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Integrate", "[",
RowBox[{
FractionBox[
SuperscriptBox["\[ExponentialE]",
RowBox[{"-",
FractionBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{"M", "-",
RowBox[{"Log", "[", "x", "]"}]}], ")"}], "2"],
RowBox[{"2", " ",
SuperscriptBox["S", "2"]}]]}]],
RowBox[{
SqrtBox[
RowBox[{"2", " ", "\[Pi]"}]], " ", "S", " ", "x"}]], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "Infinity"}], "}"}], ",",
RowBox[{"Assumptions", "\[Rule]",
RowBox[{"S", ">", "0"}]}]}], "]"}]], "Input",ExpressionUUID->"edde3a3d-\
4c50-400b-bf9f-d8b619b93e7b"],
Cell[BoxData["1"], "Output",ExpressionUUID->"8275777d-a563-49e9-aad9-140d215f9857"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{
FractionBox[
SuperscriptBox["\[ExponentialE]",
RowBox[{"-",
FractionBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{"M", "-",
RowBox[{"Log", "[", "x", "]"}]}], ")"}], "2"],
RowBox[{"2", " ",
SuperscriptBox["S", "2"]}]]}]],
RowBox[{
SqrtBox[
RowBox[{"2", " ", "\[Pi]"}]], " ", "S", " ", "x"}]],
RowBox[{"x", "^", "n"}]}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "Infinity"}], "}"}], ",",
RowBox[{"Assumptions", "\[Rule]",
RowBox[{"S", ">", "0"}]}]}], "]"}]], "Input",ExpressionUUID->"fd1c92cf-\
8666-4034-af7e-858fa15f60f3"],
Cell[BoxData[
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"M", " ", "n"}], "+",
FractionBox[
RowBox[{
SuperscriptBox["n", "2"], " ",
SuperscriptBox["S", "2"]}], "2"]}]]], "Output",ExpressionUUID->"c5ca088a-\
73c4-4561-83e7-f25097db233c"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Central Moments", "Section",ExpressionUUID->"da9b5bed-97c9-46b7-9c34-8a0966d44517"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"{",
RowBox[{
SubscriptBox["\[Mu]", "1"], ",",
SubscriptBox["\[Mu]", "2"], ",",
SubscriptBox["\[Mu]", "3"], ",",
SubscriptBox["\[Mu]", "4"]}], "}"}], "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{
FractionBox[
SuperscriptBox["\[ExponentialE]",
RowBox[{"-",
FractionBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{"M", "-",
RowBox[{"Log", "[", "x", "]"}]}], ")"}], "2"],
RowBox[{"2", " ",
SuperscriptBox["S", "2"]}]]}]],
RowBox[{
SqrtBox[
RowBox[{"2", " ", "\[Pi]"}]], " ", "S", " ", "x"}]],
SuperscriptBox[
RowBox[{"(",
RowBox[{"x", "-",
SuperscriptBox["\[ExponentialE]",
RowBox[{"M", "+",
FractionBox[
SuperscriptBox["S", "2"], "2"]}]]}], ")"}], "n"]}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "Infinity"}], "}"}], ",",
RowBox[{"Assumptions", "\[Rule]",
RowBox[{"S", ">", "0"}]}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"n", ",", "4"}], "}"}]}], "]"}]}], ")"}], "//",
"ColumnForm"}]], "Input",ExpressionUUID->"a6fcf273-b23f-48d2-b45c-\
91dcc189ad91"],
Cell[BoxData[
InterpretationBox[GridBox[{
{"0"},
{
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"2", " ", "M"}], "+",
SuperscriptBox["S", "2"]}]], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SuperscriptBox["\[ExponentialE]",
SuperscriptBox["S", "2"]]}], ")"}]}]},
{
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"3", " ", "M"}], "+",
FractionBox[
RowBox[{"3", " ",
SuperscriptBox["S", "2"]}], "2"]}]], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SuperscriptBox["\[ExponentialE]",
SuperscriptBox["S", "2"]]}], ")"}], "2"], " ",
RowBox[{"(",
RowBox[{"2", "+",
SuperscriptBox["\[ExponentialE]",
SuperscriptBox["S", "2"]]}], ")"}]}]},
{
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"4", " ", "M"}], "+",
RowBox[{"2", " ",
SuperscriptBox["S", "2"]}]}]], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SuperscriptBox["\[ExponentialE]",
SuperscriptBox["S", "2"]]}], ")"}], "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"2", " ",
SuperscriptBox["S", "2"]}]], " ",
RowBox[{"(",
RowBox[{"3", "+",
RowBox[{
SuperscriptBox["\[ExponentialE]",
SuperscriptBox["S", "2"]], " ",
RowBox[{"(",
RowBox[{"2", "+",
SuperscriptBox["\[ExponentialE]",
SuperscriptBox["S", "2"]]}], ")"}]}]}], ")"}]}]}], ")"}]}]}
},
BaselinePosition->{Baseline, {1, 1}},
GridBoxAlignment->{
"Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
"RowsIndexed" -> {}}],
ColumnForm[{
0, E^(2 $CellContext`M + $CellContext`S^2) (-1 + E^($CellContext`S^2)),
E^(3 $CellContext`M + Rational[3, 2] $CellContext`S^2) (-1 +
E^($CellContext`S^2))^2 (2 + E^($CellContext`S^2)),
E^(4 $CellContext`M + 2 $CellContext`S^2) (-1 +
E^($CellContext`S^2))^2 (-3 +
E^(2 $CellContext`S^2) (3 +
E^($CellContext`S^2) (2 + E^($CellContext`S^2))))}],
Editable->False]], "Output",ExpressionUUID->"766c3b61-ff2a-4f38-9b03-\
c85507b20c1a"]
}, Open ]],
Cell[CellGroupData[{
Cell["v4.2.1", "Subsubsection",ExpressionUUID->"3e2219f4-2057-416e-94e4-6842fecbd671"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{
FractionBox[
SuperscriptBox["\[ExponentialE]",
RowBox[{"-",
FractionBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{"M", "-",
RowBox[{"Log", "[", "x", "]"}]}], ")"}], "2"],
RowBox[{"2", " ",
SuperscriptBox["S", "2"]}]]}]],
RowBox[{
SqrtBox[
RowBox[{"2", " ", "\[Pi]"}]], " ", "S", " ", "x"}]],
SuperscriptBox[
RowBox[{"(",
RowBox[{"x", "-",
SuperscriptBox["\[ExponentialE]",
RowBox[{"M", "+",
FractionBox[
SuperscriptBox["S", "2"], "2"]}]]}], ")"}], "n"]}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "Infinity"}], "}"}], ",",
RowBox[{"Assumptions", "\[Rule]",
RowBox[{"S", ">", "0"}]}]}], "]"}], "//", "Timing"}]], "Input",Expression\
UUID->"af744df2-891e-4f36-90ec-7075b5dd93a3"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"1.9200000000000004`", " ", "Second"}], ",",
FractionBox[
RowBox[{"Integrate", "[",
RowBox[{
FractionBox[
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"-",
FractionBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{"M", "-",
RowBox[{"Log", "[", "x", "]"}]}], ")"}], "2"],
RowBox[{"2", " ",
SuperscriptBox["S", "2"]}]]}]], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-",
SuperscriptBox["\[ExponentialE]",
RowBox[{"M", "+",
FractionBox[
SuperscriptBox["S", "2"], "2"]}]]}], "+", "x"}], ")"}], "n"]}],
"x"], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",",
InterpretationBox["\[Infinity]",
DirectedInfinity[1]]}], "}"}], ",",
RowBox[{"Assumptions", "\[Rule]",
RowBox[{"S", ">", "0"}]}]}], "]"}],
RowBox[{
SqrtBox[
RowBox[{"2", " ", "\[Pi]"}]], " ", "S"}]]}], "}"}]], "Output",Expression\
UUID->"90b3a125-b239-418d-baa4-dc98986246d0"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["v5.0.1", "Subsubsection",ExpressionUUID->"dd86d56f-f8b8-4a7b-a7cc-c6042e68a500"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{
FractionBox[
SuperscriptBox["\[ExponentialE]",
RowBox[{"-",
FractionBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{"M", "-",
RowBox[{"Log", "[", "x", "]"}]}], ")"}], "2"],
RowBox[{"2", " ",
SuperscriptBox["S", "2"]}]]}]],
RowBox[{
SqrtBox[
RowBox[{"2", " ", "\[Pi]"}]], " ", "S", " ", "x"}]],
SuperscriptBox[
RowBox[{"(",
RowBox[{"x", "-",
SuperscriptBox["\[ExponentialE]",
RowBox[{"M", "+",
FractionBox[
SuperscriptBox["S", "2"], "2"]}]]}], ")"}], "n"]}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "Infinity"}], "}"}], ",",
RowBox[{"Assumptions", "\[Rule]",
RowBox[{"S", ">", "0"}]}]}], "]"}], "//", "Timing"}]], "Input",Expression\
UUID->"1d9d85a1-b69c-49f8-a114-4e9117d5747e"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"219.15`", " ", "Second"}], ",",
RowBox[{"Integrate", "[",
RowBox[{
FractionBox[
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"-",
FractionBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{"M", "-",
RowBox[{"Log", "[", "x", "]"}]}], ")"}], "2"],
RowBox[{"2", " ",
SuperscriptBox["S", "2"]}]]}]], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-",
SuperscriptBox["\[ExponentialE]",
RowBox[{"M", "+",
FractionBox[
SuperscriptBox["S", "2"], "2"]}]]}], "+", "x"}], ")"}], "n"]}],
RowBox[{
SqrtBox[
RowBox[{"2", " ", "\[Pi]"}]], " ", "S", " ", "x"}]], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "\[Infinity]"}], "}"}], ",",
RowBox[{"Assumptions", "\[Rule]",
RowBox[{"S", ">", "0"}]}]}], "]"}]}], "}"}]], "Output",ExpressionUUID->\
"73e21cc4-b504-4a6b-b34b-85a01d0e96ac"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["v5.1", "Subsubsection",ExpressionUUID->"28e83f79-158e-436d-8c5b-ef46d6386fe3"],
Cell[BoxData[
RowBox[{
RowBox[{"Developer`SetSystemOptions", "[",
RowBox[{"\"\\"", " ", "->", " ", "True"}], "]"}],
";"}]], "Input",ExpressionUUID->"78fe46b5-d02c-4d13-a089-7f22afc33529"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{
FractionBox[
SuperscriptBox["\[ExponentialE]",
RowBox[{"-",
FractionBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{"M", "-",
RowBox[{"Log", "[", "x", "]"}]}], ")"}], "2"],
RowBox[{"2", " ",
SuperscriptBox["S", "2"]}]]}]],
RowBox[{
SqrtBox[
RowBox[{"2", " ", "\[Pi]"}]], " ", "S", " ", "x"}]],
SuperscriptBox[
RowBox[{"(",
RowBox[{"x", "-",
SuperscriptBox["\[ExponentialE]",
RowBox[{"M", "+",
FractionBox[
SuperscriptBox["S", "2"], "2"]}]]}], ")"}], "n"]}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "Infinity"}], "}"}], ",",
RowBox[{"Assumptions", "\[Rule]",
RowBox[{"S", ">", "0"}]}]}], "]"}], "//", "Timing"}]], "Input",Expression\
UUID->"9f9b6e8d-96b2-4aef-a455-d9c7a9a457b7"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"398.83`", " ", "Second"}], ",",
RowBox[{"Integrate", "[",
RowBox[{
FractionBox[
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"-",
FractionBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{"M", "-",
RowBox[{"Log", "[", "x", "]"}]}], ")"}], "2"],
RowBox[{"2", " ",
SuperscriptBox["S", "2"]}]]}]], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-",
SuperscriptBox["\[ExponentialE]",
RowBox[{"M", "+",
FractionBox[
SuperscriptBox["S", "2"], "2"]}]]}], "+", "x"}], ")"}], "n"]}],
RowBox[{
SqrtBox[
RowBox[{"2", " ", "\[Pi]"}]], " ", "S", " ", "x"}]], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "\[Infinity]"}], "}"}], ",",
RowBox[{"Assumptions", "\[Rule]",
RowBox[{"S", ">", "0"}]}]}], "]"}]}], "}"}]], "Output",ExpressionUUID->\
"1ab857e7-b54c-410b-b9f0-d76c00b5ae23"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["v6.0", "Subsubsection",ExpressionUUID->"a0eb0afb-0b9e-4c2d-a462-fb15da6805c6"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{
FractionBox[
SuperscriptBox["\[ExponentialE]",
RowBox[{"-",
FractionBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{"M", "-",
RowBox[{"Log", "[", "x", "]"}]}], ")"}], "2"],
RowBox[{"2", " ",
SuperscriptBox["S", "2"]}]]}]],
RowBox[{
SqrtBox[
RowBox[{"2", " ", "\[Pi]"}]], " ", "S", " ", "x"}]],
SuperscriptBox[
RowBox[{"(",
RowBox[{"x", "-",
SuperscriptBox["\[ExponentialE]",
RowBox[{"M", "+",
FractionBox[
SuperscriptBox["S", "2"], "2"]}]]}], ")"}], "n"]}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "Infinity"}], "}"}], ",",
RowBox[{"Assumptions", "\[Rule]",
RowBox[{"S", ">", "0"}]}]}], "]"}], "//", "Timing"}]], "Input",Expression\
UUID->"ab93e12b-4587-4778-8e9b-937f994396d1"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"327.34000000000003`", " ", "Second"}], ",",
RowBox[{"Integrate", "[",
RowBox[{
FractionBox[
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"-",
FractionBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{"M", "-",
RowBox[{"Log", "[", "x", "]"}]}], ")"}], "2"],
RowBox[{"2", " ",
SuperscriptBox["S", "2"]}]]}]], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-",
SuperscriptBox["\[ExponentialE]",
RowBox[{"M", "+",
FractionBox[
SuperscriptBox["S", "2"], "2"]}]]}], "+", "x"}], ")"}], "n"]}],
RowBox[{
SqrtBox[
RowBox[{"2", " ", "\[Pi]"}]], " ", "S", " ", "x"}]], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "\[Infinity]"}], "}"}], ",",
RowBox[{"Assumptions", "\[Rule]",
RowBox[{"S", ">", "0"}]}]}], "]"}]}], "}"}]], "Output",ExpressionUUID->\
"54d5373e-5423-4734-a4de-204a384b1411"]
}, Open ]]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Mean, etc.", "Section",ExpressionUUID->"a68dba77-cbd4-474d-b15b-eaa9c533cd1a"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Simplify", "[",
RowBox[{
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"4", " ", "M"}], "+",
RowBox[{"2", " ",
SuperscriptBox["S", "2"]}]}]], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SuperscriptBox["\[ExponentialE]",
SuperscriptBox["S", "2"]]}], ")"}], "2"], " ",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"3", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"2", " ",
SuperscriptBox["S", "2"]}]]}], "+",
RowBox[{"2", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"3", " ",
SuperscriptBox["S", "2"]}]]}], "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{"4", " ",
SuperscriptBox["S", "2"]}]]}], ")"}], "/",
RowBox[{
RowBox[{"(",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"2", " ", "M"}], "+",
SuperscriptBox["S", "2"]}]], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SuperscriptBox["\[ExponentialE]",
SuperscriptBox["S", "2"]]}], ")"}]}], ")"}], "^", "2"}]}]}], "-",
"3"}], "]"}]], "Input",ExpressionUUID->"42aa31f4-2273-459b-90e3-\
721240cd3e08"],
Cell[BoxData[
RowBox[{
RowBox[{"-", "6"}], "+",
RowBox[{"3", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"2", " ",
SuperscriptBox["S", "2"]}]]}], "+",
RowBox[{"2", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"3", " ",
SuperscriptBox["S", "2"]}]]}], "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{"4", " ",
SuperscriptBox["S", "2"]}]]}]], "Output",ExpressionUUID->"a88dcb40-e8f0-\
47be-a855-a3b0d4f0581c"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"FullSimplify", "[",
RowBox[{
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"4", " ", "M"}], "+",
RowBox[{"2", " ",
SuperscriptBox["S", "2"]}]}]], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SuperscriptBox["\[ExponentialE]",
SuperscriptBox["S", "2"]]}], ")"}], "2"], " ",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"3", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"2", " ",
SuperscriptBox["S", "2"]}]]}], "+",
RowBox[{"2", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"3", " ",
SuperscriptBox["S", "2"]}]]}], "+",
SuperscriptBox["\[ExponentialE]",
RowBox[{"4", " ",
SuperscriptBox["S", "2"]}]]}], ")"}], "/",
RowBox[{
RowBox[{"(",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"2", " ", "M"}], "+",
SuperscriptBox["S", "2"]}]], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SuperscriptBox["\[ExponentialE]",
SuperscriptBox["S", "2"]]}], ")"}]}], ")"}], "^", "2"}]}]}], "-",
"3"}], "]"}]], "Input",ExpressionUUID->"97346a9e-536c-4da9-8bd7-\
55841b295b7c"],
Cell[BoxData[
RowBox[{
RowBox[{"-", "6"}], "+",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"2", " ",
SuperscriptBox["S", "2"]}]], " ",
RowBox[{"(",
RowBox[{"3", "+",
RowBox[{
SuperscriptBox["\[ExponentialE]",
SuperscriptBox["S", "2"]], " ",
RowBox[{"(",
RowBox[{"2", "+",
SuperscriptBox["\[ExponentialE]",
SuperscriptBox["S", "2"]]}], ")"}]}]}], ")"}]}]}]], "Output",Expressi\
onUUID->"de61e292-a516-408d-a3c6-23d04456e378"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"FullSimplify", "[",
RowBox[{"Through", "[",
RowBox[{
RowBox[{"{",
RowBox[{
"Mean", ",", "Variance", ",", "Skewness", ",", "KurtosisExcess"}], "}"}],
"[",
RowBox[{"LogNormalDistribution", "[",
RowBox[{"M", ",", "S"}], "]"}], "]"}], "]"}], "]"}]], "Input",ExpressionU\
UID->"f5112711-dcd8-448b-a25a-fa8d47b0b3fa"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"M", "+",
FractionBox[
SuperscriptBox["S", "2"], "2"]}]], ",",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"2", " ", "M"}], "+",
SuperscriptBox["S", "2"]}]], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SuperscriptBox["\[ExponentialE]",
SuperscriptBox["S", "2"]]}], ")"}]}], ",",
RowBox[{
SqrtBox[
RowBox[{
RowBox[{"-", "1"}], "+",
SuperscriptBox["\[ExponentialE]",
SuperscriptBox["S", "2"]]}]], " ",
RowBox[{"(",
RowBox[{"2", "+",
SuperscriptBox["\[ExponentialE]",
SuperscriptBox["S", "2"]]}], ")"}]}], ",",
RowBox[{
RowBox[{"-", "6"}], "+",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"2", " ",
SuperscriptBox["S", "2"]}]], " ",
RowBox[{"(",
RowBox[{"3", "+",
RowBox[{
SuperscriptBox["\[ExponentialE]",
SuperscriptBox["S", "2"]], " ",
RowBox[{"(",
RowBox[{"2", "+",
SuperscriptBox["\[ExponentialE]",
SuperscriptBox["S", "2"]]}], ")"}]}]}], ")"}]}]}]}],
"}"}]], "Output",ExpressionUUID->"233574e3-1917-4c93-984f-fa33fac5f9b5"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Characteristic Function", "Section",ExpressionUUID->"22cc795e-044f-4477-bca8-1c46ab6ca85d"],
Cell[CellGroupData[{
Cell["v4.2", "Subsubsection",ExpressionUUID->"d146d309-cf11-49f8-b445-8411bbe30579"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{
FractionBox[
SuperscriptBox["\[ExponentialE]",
RowBox[{"-",
FractionBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{"M", "-",
RowBox[{"Log", "[", "x", "]"}]}], ")"}], "2"],
RowBox[{"2", " ",
SuperscriptBox["S", "2"]}]]}]],
RowBox[{
SqrtBox[
RowBox[{"2", " ", "\[Pi]"}]], " ", "S", " ", "x"}]],
RowBox[{"UnitStep", "[", "x", "]"}],
RowBox[{"Exp", "[",
RowBox[{"I", " ", "t", " ", "x"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"-", "\[Infinity]"}], ",", "\[Infinity]"}], "}"}], ",",
RowBox[{"Assumptions", "\[Rule]",
RowBox[{
RowBox[{"M", ">", "0"}], "&&",
RowBox[{"S", ">", "0"}]}]}]}], "]"}], "//", "Timing"}]], "Input",Express\
ionUUID->"6146bd6a-41ee-49f8-962f-f1d501db739d"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"7.830000000000001`", " ", "Second"}], ",",
RowBox[{
FractionBox["1",
RowBox[{
SqrtBox[
RowBox[{"2", " ", "\[Pi]"}]], " ", "S"}]],
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"-",
FractionBox[
RowBox[{
SuperscriptBox["M", "2"], "-",
RowBox[{"2", " ", "\[ImaginaryI]", " ",
SuperscriptBox["S", "2"], " ", "t", " ", "x"}], "+",
SuperscriptBox[
RowBox[{"Log", "[", "x", "]"}], "2"]}],
RowBox[{"2", " ",
SuperscriptBox["S", "2"]}]]}]], " ",
SuperscriptBox["x",
RowBox[{
RowBox[{"-", "1"}], "+",
FractionBox["M",
SuperscriptBox["S", "2"]]}]]}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",",
InterpretationBox["\[Infinity]",
DirectedInfinity[1]]}], "}"}], ",",
RowBox[{"GenerateConditions", "\[Rule]", "Automatic"}], ",",
RowBox[{"Assumptions", "\[Rule]",
RowBox[{
RowBox[{"M", ">", "0"}], "&&",
RowBox[{"S", ">", "0"}]}]}]}], "]"}]}]}], "}"}]], "Output",ExpressionU\
UID->"f05b2bb1-ad27-47dd-b8b6-864d872fd5c7"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{
FractionBox[
SuperscriptBox["\[ExponentialE]",
RowBox[{"-",
FractionBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{"M", "-",
RowBox[{"Log", "[", "x", "]"}]}], ")"}], "2"],
RowBox[{"2", " ",
SuperscriptBox["S", "2"]}]]}]],
RowBox[{
SqrtBox[
RowBox[{"2", " ", "\[Pi]"}]], " ", "S", " ", "x"}]],
RowBox[{"Exp", "[",
RowBox[{"I", " ", "t", " ", "x"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "\[Infinity]"}], "}"}], ",",
RowBox[{"Assumptions", "\[Rule]",
RowBox[{
RowBox[{"M", ">", "0"}], "&&",
RowBox[{"S", ">", "0"}]}]}]}], "]"}], "//", "Timing"}]], "Input",Express\
ionUUID->"da9fe8df-090b-4a3c-bec6-c693936376e1"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"2.129999999999999`", " ", "Second"}], ",",
FractionBox[
RowBox[{"Integrate", "[",
RowBox[{
FractionBox[
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"\[ImaginaryI]", " ", "t", " ", "x"}], "-",
FractionBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{"M", "-",
RowBox[{"Log", "[", "x", "]"}]}], ")"}], "2"],
RowBox[{"2", " ",
SuperscriptBox["S", "2"]}]]}]], "x"], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",",
InterpretationBox["\[Infinity]",
DirectedInfinity[1]]}], "}"}], ",",
RowBox[{"Assumptions", "\[Rule]",
RowBox[{
RowBox[{"M", ">", "0"}], "&&",
RowBox[{"S", ">", "0"}]}]}]}], "]"}],
RowBox[{
SqrtBox[
RowBox[{"2", " ", "\[Pi]"}]], " ", "S"}]]}], "}"}]], "Output",Expression\
UUID->"4544f088-e646-4f64-ae6c-bf720e37564e"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"FourierTransform", "[",
RowBox[{
RowBox[{
FractionBox[
SuperscriptBox["\[ExponentialE]",
RowBox[{"-",
FractionBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{"M", "-",
RowBox[{"Log", "[", "x", "]"}]}], ")"}], "2"],
RowBox[{"2", " ",
SuperscriptBox["S", "2"]}]]}]],
RowBox[{
SqrtBox[
RowBox[{"2", " ", "\[Pi]"}]], " ", "S", " ", "x"}]],
RowBox[{"UnitStep", "[", "x", "]"}]}], ",", "x", ",", "t"}], "]"}], "//",
"Timing"}]], "Input",ExpressionUUID->"912ba5f7-d7de-4ba4-9129-\
99632254b823"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"3.9299999999999997`", " ", "Second"}], ",",
FractionBox[
RowBox[{"FourierTransform", "[",
RowBox[{
FractionBox[
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"-",
FractionBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{"M", "-",
RowBox[{"Log", "[", "x", "]"}]}], ")"}], "2"],
RowBox[{"2", " ",
SuperscriptBox["S", "2"]}]]}]], " ",
RowBox[{"UnitStep", "[", "x", "]"}]}], "x"], ",", "x", ",", "t"}],
"]"}],
RowBox[{
SqrtBox[
RowBox[{"2", " ", "\[Pi]"}]], " ", "S"}]]}], "}"}]], "Output",Expression\
UUID->"6e76d73a-1047-4fc8-903c-861641cd5e8e"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["v5.0", "Subsubsection",ExpressionUUID->"f3712af2-b99b-4971-bfca-efb29c55f63f"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{
FractionBox[
SuperscriptBox["\[ExponentialE]",
RowBox[{"-",
FractionBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{"M", "-",
RowBox[{"Log", "[", "x", "]"}]}], ")"}], "2"],
RowBox[{"2", " ",
SuperscriptBox["S", "2"]}]]}]],
RowBox[{
SqrtBox[
RowBox[{"2", " ", "\[Pi]"}]], " ", "S", " ", "x"}]],
RowBox[{"UnitStep", "[", "x", "]"}],
RowBox[{"Exp", "[",
RowBox[{"I", " ", "t", " ", "x"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"-", "\[Infinity]"}], ",", "\[Infinity]"}], "}"}], ",",
RowBox[{"Assumptions", "\[Rule]",
RowBox[{
RowBox[{"M", ">", "0"}], "&&",
RowBox[{"S", ">", "0"}]}]}]}], "]"}], "//", "Timing"}]], "Input",Express\
ionUUID->"fd240714-7005-4c72-975d-5b19aae8bc0b"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"18.87207`", " ", "Second"}], ",",
RowBox[{"Integrate", "[",
RowBox[{
FractionBox[
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"\[ImaginaryI]", " ", "t", " ", "x"}], "-",
FractionBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{"M", "-",
RowBox[{"Log", "[", "x", "]"}]}], ")"}], "2"],
RowBox[{"2", " ",
SuperscriptBox["S", "2"]}]]}]], " ",
RowBox[{"UnitStep", "[", "x", "]"}]}],
RowBox[{
SqrtBox[
RowBox[{"2", " ", "\[Pi]"}]], " ", "S", " ", "x"}]], ",",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"-", "\[Infinity]"}], ",", "\[Infinity]"}], "}"}], ",",
RowBox[{"Assumptions", "\[Rule]",
RowBox[{
RowBox[{"M", ">", "0"}], "&&",
RowBox[{"S", ">", "0"}]}]}]}], "]"}]}], "}"}]], "Output",ExpressionUUID\
->"a8350714-3d80-49a4-b431-7989ed6a3767"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{
FractionBox[
SuperscriptBox["\[ExponentialE]",
RowBox[{"-",
FractionBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{"M", "-",
RowBox[{"Log", "[", "x", "]"}]}], ")"}], "2"],
RowBox[{"2", " ",
SuperscriptBox["S", "2"]}]]}]],
RowBox[{
SqrtBox[
RowBox[{"2", " ", "\[Pi]"}]], " ", "S", " ", "x"}]],
RowBox[{"Exp", "[",
RowBox[{"I", " ", "t", " ", "x"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "\[Infinity]"}], "}"}], ",",
RowBox[{"Assumptions", "\[Rule]",
RowBox[{
RowBox[{"M", ">", "0"}], "&&",
RowBox[{"S", ">", "0"}]}]}]}], "]"}], "//", "Timing"}]], "Input",Express\
ionUUID->"0866f301-9527-49ca-b2f6-1945b8b79875"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"305.80078199999997`", " ", "Second"}], ",",
RowBox[{"Integrate", "[",
RowBox[{
FractionBox[
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"\[ImaginaryI]", " ", "t", " ", "x"}], "-",
FractionBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{"M", "-",
RowBox[{"Log", "[", "x", "]"}]}], ")"}], "2"],
RowBox[{"2", " ",
SuperscriptBox["S", "2"]}]]}]],
RowBox[{
SqrtBox[
RowBox[{"2", " ", "\[Pi]"}]], " ", "S", " ", "x"}]], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "\[Infinity]"}], "}"}], ",",
RowBox[{"Assumptions", "\[Rule]",
RowBox[{
RowBox[{"M", ">", "0"}], "&&",
RowBox[{"S", ">", "0"}]}]}]}], "]"}]}], "}"}]], "Output",ExpressionUUID\
->"6e55b905-b34b-40a5-8129-6a40b9931639"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"FourierTransform", "[",
RowBox[{
RowBox[{
FractionBox[
SuperscriptBox["\[ExponentialE]",
RowBox[{"-",
FractionBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{"M", "-",
RowBox[{"Log", "[", "x", "]"}]}], ")"}], "2"],
RowBox[{"2", " ",
SuperscriptBox["S", "2"]}]]}]],
RowBox[{
SqrtBox[
RowBox[{"2", " ", "\[Pi]"}]], " ", "S", " ", "x"}]],
RowBox[{"UnitStep", "[", "x", "]"}]}], ",", "x", ",", "t"}], "]"}], "//",
"Timing"}]], "Input",ExpressionUUID->"83db6850-9561-4104-b6ae-\
7fc313cd325a"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"445.82812399999995`", " ", "Second"}], ",",
RowBox[{"FourierTransform", "[",
RowBox[{
FractionBox[
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"-",
FractionBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{"M", "-",
RowBox[{"Log", "[", "x", "]"}]}], ")"}], "2"],
RowBox[{"2", " ",
SuperscriptBox["S", "2"]}]]}]], " ",
RowBox[{"UnitStep", "[", "x", "]"}]}],
RowBox[{
SqrtBox[
RowBox[{"2", " ", "\[Pi]"}]], " ", "S", " ", "x"}]], ",", "x", ",",
"t"}], "]"}]}], "}"}]], "Output",ExpressionUUID->"382f2db3-e301-4d25-\
a68c-33447f55dc97"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["v5.1", "Subsubsection",ExpressionUUID->"2cde65be-09da-4c51-9bce-cd07553cac13"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{
FractionBox[
SuperscriptBox["\[ExponentialE]",
RowBox[{"-",
FractionBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{"M", "-",
RowBox[{"Log", "[", "x", "]"}]}], ")"}], "2"],
RowBox[{"2", " ",
SuperscriptBox["S", "2"]}]]}]],
RowBox[{
SqrtBox[
RowBox[{"2", " ", "\[Pi]"}]], " ", "S", " ", "x"}]],
RowBox[{"UnitStep", "[", "x", "]"}],
RowBox[{"Exp", "[",
RowBox[{"I", " ", "t", " ", "x"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"-", "\[Infinity]"}], ",", "\[Infinity]"}], "}"}], ",",
RowBox[{"Assumptions", "\[Rule]",
RowBox[{
RowBox[{"M", ">", "0"}], "&&",
RowBox[{"S", ">", "0"}]}]}]}], "]"}], "//", "Timing"}]], "Input",Express\
ionUUID->"3ae35495-bdf6-4f82-b2bb-6f028c63f5d8"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"1200.6000000000001`", " ", "Second"}], ",",
RowBox[{"Integrate", "[",
RowBox[{
FractionBox[
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"\[ImaginaryI]", " ", "t", " ", "x"}], "-",
FractionBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{"M", "-",
RowBox[{"Log", "[", "x", "]"}]}], ")"}], "2"],
RowBox[{"2", " ",
SuperscriptBox["S", "2"]}]]}]], " ",
RowBox[{"UnitStep", "[", "x", "]"}]}],
RowBox[{
SqrtBox[
RowBox[{"2", " ", "\[Pi]"}]], " ", "S", " ", "x"}]], ",",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"-", "\[Infinity]"}], ",", "\[Infinity]"}], "}"}], ",",
RowBox[{"Assumptions", "\[Rule]",
RowBox[{
RowBox[{"M", ">", "0"}], "&&",
RowBox[{"S", ">", "0"}]}]}]}], "]"}]}], "}"}]], "Output",ExpressionUUID\
->"88aefdaf-ec72-4010-9ebf-d10b611926ae"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{
FractionBox[
SuperscriptBox["\[ExponentialE]",
RowBox[{"-",
FractionBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{"M", "-",
RowBox[{"Log", "[", "x", "]"}]}], ")"}], "2"],
RowBox[{"2", " ",
SuperscriptBox["S", "2"]}]]}]],
RowBox[{
SqrtBox[
RowBox[{"2", " ", "\[Pi]"}]], " ", "S", " ", "x"}]],
RowBox[{"Exp", "[",
RowBox[{"I", " ", "t", " ", "x"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "\[Infinity]"}], "}"}], ",",
RowBox[{"Assumptions", "\[Rule]",
RowBox[{
RowBox[{"M", ">", "0"}], "&&",
RowBox[{"S", ">", "0"}]}]}]}], "]"}], "//", "Timing"}]], "Input",Express\
ionUUID->"b6145e3e-c19e-49f8-a9cb-5f14b311a1ff"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"1078.8899999999999`", " ", "Second"}], ",",
RowBox[{"Integrate", "[",
RowBox[{
FractionBox[
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"\[ImaginaryI]", " ", "t", " ", "x"}], "-",
FractionBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{"M", "-",
RowBox[{"Log", "[", "x", "]"}]}], ")"}], "2"],
RowBox[{"2", " ",
SuperscriptBox["S", "2"]}]]}]],
RowBox[{
SqrtBox[
RowBox[{"2", " ", "\[Pi]"}]], " ", "S", " ", "x"}]], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "\[Infinity]"}], "}"}], ",",
RowBox[{"Assumptions", "\[Rule]",
RowBox[{
RowBox[{"M", ">", "0"}], "&&",
RowBox[{"S", ">", "0"}]}]}]}], "]"}]}], "}"}]], "Output",ExpressionUUID\
->"d75b1607-a840-49e1-9cab-6a1164e9802d"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"FourierTransform", "[",
RowBox[{
RowBox[{
FractionBox[
SuperscriptBox["\[ExponentialE]",
RowBox[{"-",
FractionBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{"M", "-",
RowBox[{"Log", "[", "x", "]"}]}], ")"}], "2"],
RowBox[{"2", " ",
SuperscriptBox["S", "2"]}]]}]],
RowBox[{
SqrtBox[
RowBox[{"2", " ", "\[Pi]"}]], " ", "S", " ", "x"}]],
RowBox[{"UnitStep", "[", "x", "]"}]}], ",", "x", ",", "t"}], "]"}], "//",
"Timing"}]], "Input",ExpressionUUID->"87e2f563-889d-42e9-9f3e-\
45127308b620"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"305.3000000000002`", " ", "Second"}], ",",
RowBox[{"FourierTransform", "[",
RowBox[{
FractionBox[
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"-",
FractionBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{"M", "-",
RowBox[{"Log", "[", "x", "]"}]}], ")"}], "2"],
RowBox[{"2", " ",
SuperscriptBox["S", "2"]}]]}]], " ",
RowBox[{"UnitStep", "[", "x", "]"}]}],
RowBox[{
SqrtBox[
RowBox[{"2", " ", "\[Pi]"}]], " ", "S", " ", "x"}]], ",", "x", ",",
"t"}], "]"}]}], "}"}]], "Output",ExpressionUUID->"57977e55-a45b-4301-\
8c67-be15811e8b7c"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["v6", "Subsubsection",ExpressionUUID->"9b7c0219-6dd8-4a23-94b8-1cdb9f715ef2"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{
FractionBox[
SuperscriptBox["\[ExponentialE]",
RowBox[{"-",
FractionBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{"M", "-",
RowBox[{"Log", "[", "x", "]"}]}], ")"}], "2"],
RowBox[{"2", " ",
SuperscriptBox["S", "2"]}]]}]],
RowBox[{
SqrtBox[
RowBox[{"2", " ", "\[Pi]"}]], " ", "S", " ", "x"}]],
RowBox[{"UnitStep", "[", "x", "]"}],
RowBox[{"Exp", "[",
RowBox[{"I", " ", "t", " ", "x"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"-", "\[Infinity]"}], ",", "\[Infinity]"}], "}"}], ",",
RowBox[{"Assumptions", "\[Rule]",
RowBox[{
RowBox[{"M", ">", "0"}], "&&",
RowBox[{"S", ">", "0"}]}]}]}], "]"}], "//", "Timing"}]], "Input",Express\
ionUUID->"ae10ffd7-2e19-4f59-904d-d8e99f597789"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"1041.8399999999997`", " ", "Second"}], ",",
RowBox[{"Integrate", "[",
RowBox[{
FractionBox[
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"\[ImaginaryI]", " ", "t", " ", "x"}], "-",
FractionBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{"M", "-",
RowBox[{"Log", "[", "x", "]"}]}], ")"}], "2"],
RowBox[{"2", " ",
SuperscriptBox["S", "2"]}]]}]], " ",
RowBox[{"UnitStep", "[", "x", "]"}]}],
RowBox[{
SqrtBox[
RowBox[{"2", " ", "\[Pi]"}]], " ", "S", " ", "x"}]], ",",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"-", "\[Infinity]"}], ",", "\[Infinity]"}], "}"}], ",",
RowBox[{"Assumptions", "\[Rule]",
RowBox[{
RowBox[{"M", ">", "0"}], "&&",
RowBox[{"S", ">", "0"}]}]}]}], "]"}]}], "}"}]], "Output",ExpressionUUID\
->"7350014f-0a70-4d5d-8432-66f84dc01096"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{
FractionBox[
SuperscriptBox["\[ExponentialE]",
RowBox[{"-",
FractionBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{"M", "-",
RowBox[{"Log", "[", "x", "]"}]}], ")"}], "2"],
RowBox[{"2", " ",
SuperscriptBox["S", "2"]}]]}]],
RowBox[{
SqrtBox[
RowBox[{"2", " ", "\[Pi]"}]], " ", "S", " ", "x"}]],
RowBox[{"Exp", "[",
RowBox[{"I", " ", "t", " ", "x"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "\[Infinity]"}], "}"}], ",",
RowBox[{"Assumptions", "\[Rule]",
RowBox[{
RowBox[{"M", ">", "0"}], "&&",
RowBox[{"S", ">", "0"}]}]}]}], "]"}], "//", "Timing"}]], "Input",Express\
ionUUID->"ccc2891b-0299-4ecf-83f0-67e9ddf8ca1f"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"934.23`", " ", "Second"}], ",",
RowBox[{"Integrate", "[",
RowBox[{
FractionBox[
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"\[ImaginaryI]", " ", "t", " ", "x"}], "-",
FractionBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{"M", "-",
RowBox[{"Log", "[", "x", "]"}]}], ")"}], "2"],
RowBox[{"2", " ",
SuperscriptBox["S", "2"]}]]}]],
RowBox[{
SqrtBox[
RowBox[{"2", " ", "\[Pi]"}]], " ", "S", " ", "x"}]], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "\[Infinity]"}], "}"}], ",",
RowBox[{"Assumptions", "\[Rule]",
RowBox[{
RowBox[{"M", ">", "0"}], "&&",
RowBox[{"S", ">", "0"}]}]}]}], "]"}]}], "}"}]], "Output",ExpressionUUID\
->"9e7cbe60-becd-4c7c-8e43-53b603ef2b0f"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"FourierTransform", "[",
RowBox[{
RowBox[{
FractionBox[
SuperscriptBox["\[ExponentialE]",
RowBox[{"-",
FractionBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{"M", "-",
RowBox[{"Log", "[", "x", "]"}]}], ")"}], "2"],
RowBox[{"2", " ",
SuperscriptBox["S", "2"]}]]}]],
RowBox[{
SqrtBox[
RowBox[{"2", " ", "\[Pi]"}]], " ", "S", " ", "x"}]],
RowBox[{"UnitStep", "[", "x", "]"}]}], ",", "x", ",", "t"}], "]"}], "//",
"Timing"}]], "Input",ExpressionUUID->"5e7289eb-e657-4a08-9741-\
c0f4e90936b5"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"305.2199999999998`", " ", "Second"}], ",",
RowBox[{"FourierTransform", "[",
RowBox[{
FractionBox[
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"-",
FractionBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{"M", "-",
RowBox[{"Log", "[", "x", "]"}]}], ")"}], "2"],
RowBox[{"2", " ",
SuperscriptBox["S", "2"]}]]}]], " ",
RowBox[{"UnitStep", "[", "x", "]"}]}],
RowBox[{
SqrtBox[
RowBox[{"2", " ", "\[Pi]"}]], " ", "S", " ", "x"}]], ",", "x", ",",
"t"}], "]"}]}], "}"}]], "Output",ExpressionUUID->"2cc8fc8e-9bd1-4677-\
87f8-a93659863e5e"]
}, Open ]]
}, Open ]]
}, Open ]]
}, Open ]]
},
AutoGeneratedPackage->None,
WindowSize->{803, 785},
WindowMargins->{{21, Automatic}, {Automatic, 10}},
FrontEndVersion->"11.1 for Mac OS X x86 (32-bit, 64-bit Kernel) (June 2, \
2017)",
StyleDefinitions->"Default.nb"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[CellGroupData[{
Cell[580, 22, 95, 0, 92, "Title", "ExpressionUUID" -> \
"39cd4b35-a55f-4709-bc06-2803e625c554"],
Cell[CellGroupData[{
Cell[700, 26, 83, 0, 44, "Subsection", "ExpressionUUID" -> \
"476dc8de-b39e-481a-9ae6-c7e82b1f70e3"],
Cell[786, 28, 111, 3, 49, "Text", "ExpressionUUID" -> \
"3fef5869-824d-4ee0-983c-3320c93efb3a"],
Cell[900, 33, 352, 9, 30, "Text", "ExpressionUUID" -> \
"0391f0e6-e6fc-4813-98f5-e5c3dd63044d"],
Cell[1255, 44, 372, 10, 30, "Text", "ExpressionUUID" -> \
"7a691740-82cf-4853-ab51-eb596309e6eb"],
Cell[1630, 56, 154, 2, 30, "Text", "ExpressionUUID" -> \
"3478df57-8d99-4c52-9a52-d96423a2f325"]
}, Open ]],
Cell[CellGroupData[{
Cell[1821, 63, 79, 0, 64, "Section", "ExpressionUUID" -> \
"1586a345-0bd2-4902-a70e-c172014c6101"],
Cell[CellGroupData[{
Cell[1925, 67, 1092, 27, 117, "Input", "ExpressionUUID" -> \
"f7ef3eed-becb-49b5-a221-8cde03e52026"],
Cell[3020, 96, 10236, 422, 156, 8175, 388, "GraphicsData", "PostScript", \
"Graphics", "ExpressionUUID" -> "9f4c6d55-c8a5-4a16-ab20-d34ef607eca0"],
Cell[13259, 520, 196, 5, 32, "Output", "ExpressionUUID" -> \
"7a9cd686-163c-4e86-a3d8-6a8c4b37379b"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[13504, 531, 79, 0, 64, "Section", "ExpressionUUID" -> \
"edea9a89-6bac-4ef3-9f52-fb0b34c25c24"],
Cell[CellGroupData[{
Cell[13608, 535, 334, 9, 54, "Input", "ExpressionUUID" -> \
"52a1fe5f-46b6-4c70-b6ac-21de9f297f09"],
Cell[13945, 546, 4003, 132, 240, "Output", "ExpressionUUID" -> \
"98ae86e1-5924-49ea-aee9-e130b9e9bec3"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[17997, 684, 85, 0, 70, "Section", "ExpressionUUID" -> \
"28c65ce8-4c18-4fad-b3f1-bd66c0823ccb"],
Cell[CellGroupData[{
Cell[18107, 688, 656, 20, 70, "Input", "ExpressionUUID" -> \
"edde3a3d-4c50-400b-bf9f-d8b619b93e7b"],
Cell[18766, 710, 83, 0, 70, "Output", "ExpressionUUID" -> \
"8275777d-a563-49e9-aad9-140d215f9857"]
}, Open ]],
Cell[CellGroupData[{
Cell[18886, 715, 713, 22, 70, "Input", "ExpressionUUID" -> \
"fd1c92cf-8666-4034-af7e-858fa15f60f3"],
Cell[19602, 739, 270, 8, 70, "Output", "ExpressionUUID" -> \
"c5ca088a-73c4-4561-83e7-f25097db233c"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[19921, 753, 89, 0, 70, "Section", "ExpressionUUID" -> \
"da9b5bed-97c9-46b7-9c34-8a0966d44517"],
Cell[CellGroupData[{
Cell[20035, 757, 1422, 42, 70, "Input", "ExpressionUUID" -> \
"a6fcf273-b23f-48d2-b45c-91dcc189ad91"],
Cell[21460, 801, 2526, 75, 70, "Output", "ExpressionUUID" -> \
"766c3b61-ff2a-4f38-9b03-c85507b20c1a"]
}, Open ]],
Cell[CellGroupData[{
Cell[24023, 881, 86, 0, 70, "Subsubsection", "ExpressionUUID" -> \
"3e2219f4-2057-416e-94e4-6842fecbd671"],
Cell[CellGroupData[{
Cell[24134, 885, 954, 29, 70, "Input", "ExpressionUUID" -> \
"af744df2-891e-4f36-90ec-7075b5dd93a3"],
Cell[25091, 916, 1185, 36, 70, "Output", "ExpressionUUID" -> \
"90b3a125-b239-418d-baa4-dc98986246d0"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[26325, 958, 86, 0, 70, "Subsubsection", "ExpressionUUID" -> \
"dd86d56f-f8b8-4a7b-a7cc-c6042e68a500"],
Cell[CellGroupData[{
Cell[26436, 962, 954, 29, 70, "Input", "ExpressionUUID" -> \
"1d9d85a1-b69c-49f8-a114-4e9117d5747e"],
Cell[27393, 993, 1083, 33, 70, "Output", "ExpressionUUID" -> \
"73e21cc4-b504-4a6b-b34b-85a01d0e96ac"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[28525, 1032, 84, 0, 70, "Subsubsection", "ExpressionUUID" -> \
"28e83f79-158e-436d-8c5b-ef46d6386fe3"],
Cell[28612, 1034, 214, 4, 70, "Input", "ExpressionUUID" -> \
"78fe46b5-d02c-4d13-a089-7f22afc33529"],
Cell[CellGroupData[{
Cell[28851, 1042, 954, 29, 70, "Input", "ExpressionUUID" -> \
"9f9b6e8d-96b2-4aef-a455-d9c7a9a457b7"],
Cell[29808, 1073, 1083, 33, 70, "Output", "ExpressionUUID" -> \
"1ab857e7-b54c-410b-b9f0-d76c00b5ae23"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[30940, 1112, 84, 0, 70, "Subsubsection", "ExpressionUUID" -> \
"a0eb0afb-0b9e-4c2d-a462-fb15da6805c6"],
Cell[CellGroupData[{
Cell[31049, 1116, 954, 29, 70, "Input", "ExpressionUUID" -> \
"ab93e12b-4587-4778-8e9b-937f994396d1"],
Cell[32006, 1147, 1095, 33, 70, "Output", "ExpressionUUID" -> \
"54d5373e-5423-4734-a4de-204a384b1411"]
}, Open ]]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[33162, 1187, 84, 0, 70, "Section", "ExpressionUUID" -> \
"a68dba77-cbd4-474d-b15b-eaa9c533cd1a"],
Cell[CellGroupData[{
Cell[33271, 1191, 1377, 43, 70, "Input", "ExpressionUUID" -> \
"42aa31f4-2273-459b-90e3-721240cd3e08"],
Cell[34651, 1236, 461, 14, 70, "Output", "ExpressionUUID" -> \
"a88dcb40-e8f0-47be-a855-a3b0d4f0581c"]
}, Open ]],
Cell[CellGroupData[{
Cell[35149, 1255, 1381, 43, 70, "Input", "ExpressionUUID" -> \
"97346a9e-536c-4da9-8bd7-55841b295b7c"],
Cell[36533, 1300, 515, 16, 70, "Output", "ExpressionUUID" -> \
"de61e292-a516-408d-a3c6-23d04456e378"]
}, Open ]],
Cell[CellGroupData[{
Cell[37085, 1321, 373, 10, 70, "Input", "ExpressionUUID" -> \
"f5112711-dcd8-448b-a25a-fa8d47b0b3fa"],
Cell[37461, 1333, 1295, 42, 70, "Output", "ExpressionUUID" -> \
"233574e3-1917-4c93-984f-fa33fac5f9b5"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[38805, 1381, 97, 0, 70, "Section", "ExpressionUUID" -> \
"22cc795e-044f-4477-bca8-1c46ab6ca85d"],
Cell[CellGroupData[{
Cell[38927, 1385, 84, 0, 70, "Subsubsection", "ExpressionUUID" -> \
"d146d309-cf11-49f8-b445-8411bbe30579"],
Cell[CellGroupData[{
Cell[39036, 1389, 939, 28, 70, "Input", "ExpressionUUID" -> \
"6146bd6a-41ee-49f8-962f-f1d501db739d"],
Cell[39978, 1419, 1281, 37, 70, "Output", "ExpressionUUID" -> \
"f05b2bb1-ad27-47dd-b8b6-864d872fd5c7"]
}, Open ]],
Cell[CellGroupData[{
Cell[41296, 1461, 864, 26, 70, "Input", "ExpressionUUID" -> \
"da9fe8df-090b-4a3c-bec6-c693936376e1"],
Cell[42163, 1489, 985, 29, 70, "Output", "ExpressionUUID" -> \
"4544f088-e646-4f64-ae6c-bf720e37564e"]
}, Open ]],
Cell[CellGroupData[{
Cell[43185, 1523, 649, 20, 70, "Input", "ExpressionUUID" -> \
"912ba5f7-d7de-4ba4-9129-99632254b823"],
Cell[43837, 1545, 757, 23, 70, "Output", "ExpressionUUID" -> \
"6e76d73a-1047-4fc8-903c-861641cd5e8e"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[44643, 1574, 84, 0, 70, "Subsubsection", "ExpressionUUID" -> \
"f3712af2-b99b-4971-bfca-efb29c55f63f"],
Cell[CellGroupData[{
Cell[44752, 1578, 939, 28, 70, "Input", "ExpressionUUID" -> \
"fd240714-7005-4c72-975d-5b19aae8bc0b"],
Cell[45694, 1608, 1003, 29, 70, "Output", "ExpressionUUID" -> \
"a8350714-3d80-49a4-b431-7989ed6a3767"]
}, Open ]],
Cell[CellGroupData[{
Cell[46734, 1642, 864, 26, 70, "Input", "ExpressionUUID" -> \
"0866f301-9527-49ca-b2f6-1945b8b79875"],
Cell[47601, 1670, 903, 26, 70, "Output", "ExpressionUUID" -> \
"6e55b905-b34b-40a5-8129-6a40b9931639"]
}, Open ]],
Cell[CellGroupData[{
Cell[48541, 1701, 649, 20, 70, "Input", "ExpressionUUID" -> \
"83db6850-9561-4104-b6ae-7fc313cd325a"],
Cell[49193, 1723, 737, 22, 70, "Output", "ExpressionUUID" -> \
"382f2db3-e301-4d25-a68c-33447f55dc97"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[49979, 1751, 84, 0, 70, "Subsubsection", "ExpressionUUID" -> \
"2cde65be-09da-4c51-9bce-cd07553cac13"],
Cell[CellGroupData[{
Cell[50088, 1755, 939, 28, 70, "Input", "ExpressionUUID" -> \
"3ae35495-bdf6-4f82-b2bb-6f028c63f5d8"],
Cell[51030, 1785, 1013, 29, 70, "Output", "ExpressionUUID" -> \
"88aefdaf-ec72-4010-9ebf-d10b611926ae"]
}, Open ]],
Cell[CellGroupData[{
Cell[52080, 1819, 864, 26, 70, "Input", "ExpressionUUID" -> \
"b6145e3e-c19e-49f8-a9cb-5f14b311a1ff"],
Cell[52947, 1847, 903, 26, 70, "Output", "ExpressionUUID" -> \
"d75b1607-a840-49e1-9cab-6a1164e9802d"]
}, Open ]],
Cell[CellGroupData[{
Cell[53887, 1878, 649, 20, 70, "Input", "ExpressionUUID" -> \
"87e2f563-889d-42e9-9f3e-45127308b620"],
Cell[54539, 1900, 736, 22, 70, "Output", "ExpressionUUID" -> \
"57977e55-a45b-4301-8c67-be15811e8b7c"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[55324, 1928, 82, 0, 70, "Subsubsection", "ExpressionUUID" -> \
"9b7c0219-6dd8-4a23-94b8-1cdb9f715ef2"],
Cell[CellGroupData[{
Cell[55431, 1932, 939, 28, 70, "Input", "ExpressionUUID" -> \
"ae10ffd7-2e19-4f59-904d-d8e99f597789"],
Cell[56373, 1962, 1013, 29, 70, "Output", "ExpressionUUID" -> \
"7350014f-0a70-4d5d-8432-66f84dc01096"]
}, Open ]],
Cell[CellGroupData[{
Cell[57423, 1996, 864, 26, 70, "Input", "ExpressionUUID" -> \
"ccc2891b-0299-4ecf-83f0-67e9ddf8ca1f"],
Cell[58290, 2024, 891, 26, 70, "Output", "ExpressionUUID" -> \
"9e7cbe60-becd-4c7c-8e43-53b603ef2b0f"]
}, Open ]],
Cell[CellGroupData[{
Cell[59218, 2055, 649, 20, 70, "Input", "ExpressionUUID" -> \
"5e7289eb-e657-4a08-9741-c0f4e90936b5"],
Cell[59870, 2077, 736, 22, 70, "Output", "ExpressionUUID" -> \
"2cc8fc8e-9bd1-4677-87f8-a93659863e5e"]
}, Open ]]
}, Open ]]
}, Open ]]
}, Open ]]
}
]
*)
(* End of internal cache information *)