Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002 Dec;3(6):587-99.
doi: 10.2174/1389203023380404.

Spinorphin as an endogenous inhibitor of enkephalin-degrading enzymes: roles in pain and inflammation

Affiliations
Review

Spinorphin as an endogenous inhibitor of enkephalin-degrading enzymes: roles in pain and inflammation

Y Yamamoto et al. Curr Protein Pept Sci. 2002 Dec.

Abstract

It is possible that enkephalins are involved in the pain-modulating mechanism in the spinal cord. Enkephalins, however, are short-lived, being rapidly degraded by various endogenous enzymes. Many substances that inhibit enkephalin-degradation have been investigated and it has been reported that some inhibitors (e.g. kelatorphan and RB101) alone showed anti-nociceptive activity. We found an endogenous factor that modulated enkephalin-degrading activity and purified it from bovine spinal cord based on its inhibitory activity toward enkephalin-degrading enzymes. Structural analysis revealed the factor to be Leu-Val-Val-Tyr-Pro-Trp-Thr and it was named spinorphin. It has been found that spinorphin inhibited the activity toward various enkephalin-degrading enzymes from monkey brain, especially dipeptidyl peptidase III (DPPIII, Ki=5.1 x 10(-7) M). Recently we reported that this inhibitor significantly inhibited bradykinin (BK)-induced nociceptive flexor responses. Importantly, the mode of inhibition to BK-responses by spinorphin was different from the case with morphine. The morphine-induced blockade of BK-response was attenuated by pertussis toxin treatment, whereas that of spinorphin was not. We also have reported roles for spinorphin in inflammation. Spinorphin significantly inhibited the functions of polymorphonuclear neutrophils (PMNs) by suppressing the binding of fMLF to its receptor on PMNs. Further, this inhibitor suppressed the carrageenan-induced accumulation of PMN in mouse air pouches after intravenous administration. These results indicate that spinorphin may be an endogenous anti-inflammatory regulator. The possible role of spinorphin and its analog as regulators in pain and inflammation will be discussed.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources